3. Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, et al. Regulation of mammalian autophagy in physiology and pathophysiology.
Physiol Rev. 2010;90(4):1383-1435.DOI:
10.1152/physrev.00030.2009. PMID:
20959619.
4. Schuck S. Microautophagy - distinct molecular mechanisms handle cargoes of many sizes.
J Cell Sci. 2020;133(17):jcs246322.DOI:
10.1242/jcs.246322. PMID:
32907930.
5. Wang L, Klionsky DJ, Shen HM. The emerging mechanisms and functions of microautophagy.
Nat Rev Mol Cell Biol. 2023;24(3):186-203.DOI:
10.1038/s41580-022-00529-z. PMID:
36097284.
8. Karanasios E, Walker SA, Okkenhaug H, Manifava M, Hummel E, Zimmermann H, et al. Autophagy initiation by ULK complex assembly on ER tubulovesicular regions marked by ATG9 vesicles.
Nat Commun. 2016;7:12420.DOI:
10.1038/ncomms12420. PMID:
27510922. PMCID:
PMC4987534.
11. Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum.
J Cell Biol. 2008;182(4):685-701.DOI:
10.1083/jcb.200803137. PMID:
18725538. PMCID:
PMC2518708.
12. Polson HE, de Lartigue J, Rigden DJ, Reedijk M, Urbe S, Clague MJ, et al. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation.
Autophagy. 2010;6(4):506-522.DOI:
10.4161/auto.6.4.11863. PMID:
20505359.
13. Ge L, Zhang M, Schekman R. Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER-Golgi intermediate compartment.
Elife. 2014;3:e04135.DOI:
10.7554/eLife.04135. PMID:
25432021. PMCID:
PMC4270069.
15. Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M, Takao T, et al. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate.
J Cell Sci. 2003;116(Pt 9):1679-1688.DOI:
10.1242/jcs.00381. PMID:
12665549.
16. Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, Takao T, et al. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy.
J Biol Chem. 2007;282(52):37298-37302.DOI:
10.1074/jbc.C700195200. PMID:
17986448.
18. Itakura E, Kishi-Itakura C, Mizushima N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes.
Cell. 2012;151(6):1256-1269.DOI:
10.1016/j.cell.2012.11.001. PMID:
23217709.
19. Jian F, Wang S, Tian R, Wang Y, Li C, Li Y, et al. The STX17-SNAP47-VAMP7/VAMP8 complex is the default SNARE complex mediating autophagosome-lysosome fusion.
Cell Res. 2024;34(2):151-168.DOI:
10.1038/s41422-023-00916-x. PMID:
38182888. PMCID:
PMC10837459.
20. Jiang P, Nishimura T, Sakamaki Y, Itakura E, Hatta T, Natsume T, et al. The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17.
Mol Biol Cell. 2014;25(8):1327-1337.DOI:
10.1091/mbc.e13-08-0447. PMID:
24554770. PMCID:
PMC3982997.
21. Bucci C, Thomsen P, Nicoziani P, McCarthy J, van Deurs B. Rab7: a key to lysosome biogenesis.
Mol Biol Cell. 2000;11(2):467-480.DOI:
10.1091/mbc.11.2.467. PMID:
10679007. PMCID:
PMC14786.
22. Rusten TE, Vaccari T, Lindmo K, Rodahl LM, Nezis IP, Sem-Jacobsen C, et al. ESCRTs and Fab1 regulate distinct steps of autophagy.
Curr Biol. 2007;17(20):1817-1825.DOI:
10.1016/j.cub.2007.09.032. PMID:
17935992.
23. Lee JA, Beigneux A, Ahmad ST, Young SG, Gao FB. ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration.
Curr Biol. 2007;17(18):1561-1567.DOI:
10.1016/j.cub.2007.07.029. PMID:
17683935.
24. Liang C, Lee JS, Inn KS, Gack MU, Li Q, Roberts EA, et al. Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking.
Nat Cell Biol. 2008;10(7):776-787.DOI:
10.1038/ncb1740. PMID:
18552835. PMCID:
PMC2878716.
25. Raudenska M, Balvan J, Masarik M. Crosstalk between autophagy inhibitors and endosome-related secretory pathways: a challenge for autophagy-based treatment of solid cancers.
Mol Cancer. 2021;20(1):140.DOI:
10.1186/s12943-021-01423-6. PMID:
34706732. PMCID:
PMC8549397.
26. Huynh KK, Eskelinen EL, Scott CC, Malevanets A, Saftig P, Grinstein S. LAMP proteins are required for fusion of lysosomes with phagosomes.
EMBO J. 2007;26(2):313-324.DOI:
10.1038/sj.emboj.7601511. PMID:
17245426. PMCID:
PMC1783450.
28. Dubuisson JF, Swanson MS. Mouse infection by Legionella, a model to analyze autophagy.
Autophagy. 2006;2(3):179-182.DOI:
10.4161/auto.2831. PMID:
16874080. PMCID:
PMC1774947.
29. Qin Z, Yang Y, Wang H, Luo J, Huang X, You J, et al. Role of Autophagy and Apoptosis in the Postinfluenza Bacterial Pneumonia.
Biomed Res Int. 2016;2016:3801026.DOI:
10.1155/2016/3801026. PMID:
27376082. PMCID:
PMC4916274.
30. Nikouee A, Kim M, Ding X, Sun Y, Zang QS. Beclin-1-Dependent Autophagy Improves Outcomes of Pneumonia-Induced Sepsis.
Front Cell Infect Microbiol. 2021;11:706637.DOI:
10.3389/fcimb.2021.706637. PMID:
34211859. PMCID:
PMC8239405.
31. Cadwell K. Crosstalk between autophagy and inflammatory signalling pathways: balancing defence and homeostasis.
Nat Rev Immunol. 2016;16(11):661-675.DOI:
10.1038/nri.2016.100. PMID:
27694913. PMCID:
PMC5343289.
33. Pang Y, Wu L, Tang C, Wang H, Wei Y. Autophagy-Inflammation Interplay During Infection: Balancing Pathogen Clearance and Host Inflammation.
Front Pharmacol. 2022;13:832750.DOI:
10.3389/fphar.2022.832750. PMID:
35273506. PMCID:
PMC8902503.
34. Takahama M, Akira S, Saitoh T. Autophagy limits activation of the inflammasomes.
Immunol Rev. 2018;281(1):62-73.DOI:
10.1111/imr.12613. PMID:
29248000.
36. Joshi AD, Swanson MS. Secrets of a successful pathogen: legionella resistance to progression along the autophagic pathway.
Front Microbiol. 2011;2:138.DOI:
10.3389/fmicb.2011.00138. PMID:
21743811. PMCID:
PMC3127087.
38. Lam GY, Cemma M, Muise AM, Higgins DE, Brumell JH. Host and bacterial factors that regulate LC3 recruitment to Listeria monocytogenes during the early stages of macrophage infection.
Autophagy. 2013;9(7):985-995.DOI:
10.4161/auto.24406. PMID:
23584039. PMCID:
PMC3722333.
39. Kyei GB, Dinkins C, Davis AS, Roberts E, Singh SB, Dong C, et al. Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages.
J Cell Biol. 2009;186(2):255-268.DOI:
10.1083/jcb.200903070. PMID:
19635843. PMCID:
PMC2717652.
40. Dasari V, Rehan S, Tey SK, Smyth MJ, Smith C, Khanna R. Autophagy and proteasome interconnect to coordinate cross-presentation through MHC class I pathway in B cells.
Immunol Cell Biol. 2016;94(10):964-974.DOI:
10.1038/icb.2016.59. PMID:
27297581.
45. Skendros P, Mitroulis I, Ritis K. Autophagy in Neutrophils: From Granulopoiesis to Neutrophil Extracellular Traps.
Front Cell Dev Biol. 2018;6:109.DOI:
10.3389/fcell.2018.00109. PMID:
30234114. PMCID:
PMC6131573.
46. Munz C. Autophagy Beyond Intracellular MHC Class II Antigen Presentation.
Trends Immunol. 2016;37(11):755-763.DOI:
10.1016/j.it.2016.08.017. PMID:
27667710.
47. Johansen T, Lamark T. Selective Autophagy: ATG8 Family Proteins, LIR Motifs and Cargo Receptors.
J Mol Biol. 2020;432(1):80-103.DOI:
10.1016/j.jmb.2019.07.016. PMID:
31310766.
49. Vargas JNS, Hamasaki M, Kawabata T, Youle RJ, Yoshimori T. The mechanisms and roles of selective autophagy in mammals.
Nat Rev Mol Cell Biol. 2023;24(3):167-185.DOI:
10.1038/s41580-022-00542-2. PMID:
36302887.
50. Zheng YT, Shahnazari S, Brech A, Lamark T, Johansen T, Brumell JH. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway.
J Immunol. 2009;183(9):5909-5916.DOI:
10.4049/jimmunol.0900441. PMID:
19812211.
51. Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, Brady NR, et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth.
Science. 2011;333(6039):228-233.DOI:
10.1126/science.1205405. PMID:
21617041. PMCID:
PMC3714538.
52. Thurston TL, Ryzhakov G, Bloor S, von Muhlinen N, Randow F. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria.
Nat Immunol. 2009;10(11):1215-1221.DOI:
10.1038/ni.1800. PMID:
19820708.
53. Tumbarello DA, Manna PT, Allen M, Bycroft M, Arden SD, Kendrick-Jones J, et al. The Autophagy Receptor TAX1BP1 and the Molecular Motor Myosin VI Are Required for Clearance of Salmonella Typhimurium by Autophagy.
PLoS Pathog. 2015;11(10):e1005174.DOI:
10.1371/journal.ppat.1005174. PMID:
26451915. PMCID:
PMC4599966.
54. Thurston TL, Wandel MP, von Muhlinen N, Foeglein A, Randow F. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion.
Nature. 2012;482(7385):414-418.DOI:
10.1038/nature10744. PMID:
22246324. PMCID:
PMC3343631.
55. Bell SL, Lopez KL, Cox JS, Patrick KL, Watson RO. Galectin-8 Senses Phagosomal Damage and Recruits Selective Autophagy Adapter TAX1BP1 To Control Mycobacterium tuberculosis Infection in Macrophages.
mBio. 2021;12(4):e0187120.DOI:
10.1128/mBio.01871-20. PMID:
34225486. PMCID:
PMC8406326.
56. Lin CY, Nozawa T, Minowa-Nozawa A, Toh H, Hikichi M, Iibushi J, et al. Autophagy Receptor Tollip Facilitates Bacterial Autophagy by Recruiting Galectin-7 in Response to Group A Streptococcus Infection.
Front Cell Infect Microbiol. 2020;10:583137.DOI:
10.3389/fcimb.2020.583137. PMID:
33425778. PMCID:
PMC7786282.
57. Miyakawa K, Nishi M, Ogawa M, Matsunaga S, Sugiyama M, Nishitsuji H, et al. Galectin-9 restricts hepatitis B virus replication via p62/SQSTM1-mediated selective autophagy of viral core proteins.
Nat Commun. 2022;13(1):531.DOI:
10.1038/s41467-022-28171-5. PMID:
35087074. PMCID:
PMC8795376.
58. Morrison HM, Craft J, Rivera-Lugo R, Johnson JR, Golovkine GR, Bell SL, et al. Deficiency in Galectin-3, -8, and -9 impairs immunity to chronic Mycobacterium tuberculosis infection but not acute infection with multiple intracellular pathogens.
PLoS Pathog. 2023;19(6):e1011088.DOI:
10.1371/journal.ppat.1011088. PMID:
37352334. PMCID:
PMC10325092.
59. Kimmey JM, Huynh JP, Weiss LA, Park S, Kambal A, Debnath J, et al. Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection.
Nature. 2015;528(7583):565-9.DOI:
10.1038/nature16451. PMID:
26649827. PMCID:
PMC4842313.
60. Golovkine GR, Roberts AW, Morrison HM, Rivera-Lugo R, McCall RM, Nilsson H, et al. Autophagy restricts Mycobacterium tuberculosis during acute infection in mice.
Nat Microbiol. 2023;8(5):819-832.DOI:
10.1038/s41564-023-01354-6. PMID:
37037941. PMCID:
PMC11027733.
61. Barnett TC, Liebl D, Seymour LM, Gillen CM, Lim JY, Larock CN, et al. The globally disseminated M1T1 clone of group A Streptococcus evades autophagy for intracellular replication.
Cell Host Microbe. 2013;14(6):675-682.DOI:
10.1016/j.chom.2013.11.003. PMID:
24331465. PMCID:
PMC3918495.
62. Choy A, Dancourt J, Mugo B, O'Connor TJ, Isberg RR, Melia TJ, et al. The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation.
Science. 2012;338(6110):1072-1076.DOI:
10.1126/science.1227026. PMID:
23112293. PMCID:
PMC3682818.
63. Liu B, Fang M, Hu Y, Huang B, Li N, Chang C, et al. Hepatitis B virus X protein inhibits autophagic degradation by impairing lysosomal maturation.
Autophagy. 2014;10(3):416-430.DOI:
10.4161/auto.27286. PMID:
24401568. PMCID:
PMC4077881.
64. Van Grol J, Subauste C, Andrade RM, Fujinaga K, Nelson J, Subauste CS. HIV-1 inhibits autophagy in bystander macrophage/monocytic cells through Src-Akt and STAT3.
PLoS One. 2010;5(7):e11733.DOI:
10.1371/journal.pone.0011733. PMID:
20661303. PMCID:
PMC2908694.
65. Beale R, Wise H, Stuart A, Ravenhill BJ, Digard P, Randow F. A LC3-interacting motif in the influenza A virus M2 protein is required to subvert autophagy and maintain virion stability.
Cell Host Microbe. 2014;15(2):239-247.DOI:
10.1016/j.chom.2014.01.006. PMID:
24528869. PMCID:
PMC3991421.
68. Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy.
J Cell Biol. 2008;183(5):795-803.DOI:
10.1083/jcb.200809125. PMID:
19029340. PMCID:
PMC2592826.
69. Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, Kim J, et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy.
Proc Natl Acad Sci U S A. 2010;107(1):378-383.DOI:
10.1073/pnas.0911187107. PMID:
19966284. PMCID:
PMC2806779.
70. Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin.
PLoS Biol. 2010;8(1):e1000298.DOI:
10.1371/journal.pbio.1000298. PMID:
20126261. PMCID:
PMC2811155.
71. Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1.
Nat Cell Biol. 2010;12(2):119-131.DOI:
10.1038/ncb2012. PMID:
20098416.
73. Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy.
Nature. 2015;524(7565):309-314.DOI:
10.1038/nature14893. PMID:
26266977. PMCID:
PMC5018156.
74. Novak I, Kirkin V, McEwan DG, Zhang J, Wild P, Rozenknop A, et al. Nix is a selective autophagy receptor for mitochondrial clearance.
EMBO Rep. 2010;11(1):45-51.DOI:
10.1038/embor.2009.256. PMID:
20010802. PMCID:
PMC2816619.
75. Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S, Gustafsson AB. Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy.
J Biol Chem. 2012;287(23):19094-19104.DOI:
10.1074/jbc.M111.322933. PMID:
22505714. PMCID:
PMC3365942.
76. Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells.
Nat Cell Biol. 2012;14(2):177-185.DOI:
10.1038/ncb2422. PMID:
22267086.
77. Murakawa T, Yamaguchi O, Hashimoto A, Hikoso S, Takeda T, Oka T, et al. Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation.
Nat Commun. 2015;6:7527.DOI:
10.1038/ncomms8527. PMID:
26146385. PMCID:
PMC4501433.
78. Bhujabal Z, Birgisdottir AB, Sjottem E, Brenne HB, Overvatn A, Habisov S, et al. FKBP8 recruits LC3A to mediate Parkin-independent mitophagy.
EMBO Rep. 2017;18(6):947-961.DOI:
10.15252/embr.201643147. PMID:
28381481. PMCID:
PMC5452039.
79. Zhang Y, Yao Y, Qiu X, Wang G, Hu Z, Chen S, et al. Listeria hijacks host mitophagy through a novel mitophagy receptor to evade killing.
Nat Immunol. 2019;20(4):433-446.DOI:
10.1038/s41590-019-0324-2. PMID:
30804553.
80. Strappazzon F, Nazio F, Corrado M, Cianfanelli V, Romagnoli A, Fimia GM, et al. AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1.
Cell Death Differ. 2015;22(3):419-432.DOI:
10.1038/cdd.2014.139. PMID:
25215947. PMCID:
PMC4326570.
81. Chu CT, Ji J, Dagda RK, Jiang JF, Tyurina YY, Kapralov AA, et al. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells.
Nat Cell Biol. 2013;15(10):1197-1205.DOI:
10.1038/ncb2837. PMID:
24036476. PMCID:
PMC3806088.
82. Cho DH, Kim JK, Jo EK. Mitophagy and Innate Immunity in Infection. Mol Cells. 2020;43(1):10-22.
83. Kang R, Zeng L, Xie Y, Yan Z, Zhou B, Cao L, et al. A novel PINK1- and PARK2-dependent protective neuroimmune pathway in lethal sepsis.
Autophagy. 2016;12(12):2374-2385.DOI:
10.1080/15548627.2016.1239678. PMID:
27754761. PMCID:
PMC5173260.
84. West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM, Lang SM, et al. Mitochondrial DNA stress primes the antiviral innate immune response.
Nature. 2015;520(7548):553-557.DOI:
10.1038/nature14156. PMID:
25642965. PMCID:
PMC4409480.
85. Sliter DA, Martinez J, Hao L, Chen X, Sun N, Fischer TD, et al. Parkin and PINK1 mitigate STING-induced inflammation.
Nature. 2018;561(7722):258-262.DOI:
10.1038/s41586-018-0448-9. PMID:
30135585. PMCID:
PMC7362342.
86. Wang R, Zhu Y, Ren C, Yang S, Tian S, Chen H, et al. Influenza A virus protein PB1-F2 impairs innate immunity by inducing mitophagy.
Autophagy. 2021;17(2):496-511.DOI:
10.1080/15548627.2020.1725375. PMID:
32013669. PMCID:
PMC8007153.
87. Zhang B, Xu S, Liu M, Wei Y, Wang Q, Shen W, et al. The nucleoprotein of influenza A virus inhibits the innate immune response by inducing mitophagy.
Autophagy. 2023;19(7):1916-1933.DOI:
10.1080/15548627.2022.2162798. PMID:
36588386. PMCID:
PMC10283423.
88. Vo MT, Smith BJ, Nicholas J, Choi YB. Activation of NIX-mediated mitophagy by an interferon regulatory factor homologue of human herpesvirus.
Nat Commun. 2019;10(1):3203.DOI:
10.1038/s41467-019-11164-2. PMID:
31324791. PMCID:
PMC6642096.
89. Martinez J, Almendinger J, Oberst A, Ness R, Dillon CP, Fitzgerald P, et al. Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells.
Proc Natl Acad Sci U S A. 2011;108(42):17396-17401.DOI:
10.1073/pnas.1113421108. PMID:
21969579. PMCID:
PMC3198353.
91. Sanjuan MA, Dillon CP, Tait SW, Moshiach S, Dorsey F, Connell S, et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis.
Nature. 2007;450(7173):1253-1257.DOI:
10.1038/nature06421. PMID:
18097414.
92. Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, et al. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages.
Nat Cell Biol. 2009;11(4):385-396.DOI:
10.1038/ncb1846. PMID:
19270696.
93. Fletcher K, Ulferts R, Jacquin E, Veith T, Gammoh N, Arasteh JM, et al. The WD40 domain of ATG16L1 is required for its non-canonical role in lipidation of LC3 at single membranes.
EMBO J. 2018;37(4):e97840.DOI:
10.15252/embj.201797840. PMID:
29317426. PMCID:
PMC5813257.
94. Hooper KM, Jacquin E, Li T, Goodwin JM, Brumell JH, Durgan J, et al. V-ATPase is a universal regulator of LC3-associated phagocytosis and non-canonical autophagy.
J Cell Biol. 2022;221(6):e202105112.DOI:
10.1083/jcb.202105112. PMID:
35511089. PMCID:
PMC9082624.
95. Huang JH, Liu CY, Wu SY, Chen WY, Chang TH, Kan HW, et al. NLRX1 Facilitates Histoplasma capsulatum-Induced LC3-Associated Phagocytosis for Cytokine Production in Macrophages.
Front Immunol. 2018;9:2761.DOI:
10.3389/fimmu.2018.02761. PMID:
30559741. PMCID:
PMC6286976.
96. Herb M, Gluschko A, Schramm M. LC3-associated phagocytosis initiated by integrin ITGAM-ITGB2/Mac-1 enhances immunity to Listeria monocytogenes.
Autophagy. 2018;14(8):1462-1464.DOI:
10.1080/15548627.2018.1475816. PMID:
29923444. PMCID:
PMC6103671.
97. Sarkar A, Tindle C, Pranadinata RF, Reed S, Eckmann L, Stappenbeck TS, et al. ELMO1 Regulates Autophagy Induction and Bacterial Clearance During Enteric Infection.
J Infect Dis. 2017;216(12):1655-1666.DOI:
10.1093/infdis/jix528. PMID:
29029244. PMCID:
PMC5853658.
98. Forn-Cuni G, Welvaarts L, Stel FM, van den Hondel CJ, Arentshorst M, Ram A, et al. Stimulating the autophagic-lysosomal axis enhances host defense against fungal infection in a zebrafish model of invasive Aspergillosis.
Autophagy. 2023;19(1):324-337.DOI:
10.1080/15548627.2022.2090727. PMID:
35775203. PMCID:
PMC9809955.
99. Willmann K, Moita LF. Physiologic disruption and metabolic reprogramming in infection and sepsis.
Cell Metab. 2024;36(5):927-946.DOI:
10.1016/j.cmet.2024.02.013. PMID:
38513649.
100. Chen YT, Lohia GK, Chen S, Riquelme SA. Immunometabolic Regulation of Bacterial Infection, Biofilms, and Antibiotic Susceptibility.
J Innate Immun. 2024;16(1):143-158.DOI:
10.1159/000536649. PMID:
38310854. PMCID:
PMC10914382.
101. Cheng SC, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V, et al. mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity.
Science. 2014;345(6204):1250684.DOI:
10.1126/science.1250684. PMID:
25258083. PMCID:
PMC4226238.
102. Ó Maoldomhnaigh C, Cox DJ, Phelan JJ, Mitermite M, Murphy DM, Leisching G, et al. Lactate Alters Metabolism in Human Macrophages and Improves Their Ability to Kill Mycobacterium tuberculosis.
Front Immunol. 2021;12:663695.DOI:
10.3389/fimmu.2021.663695. PMID:
34691015. PMCID:
PMC8526932.
105. Roca FJ, Whitworth LJ, Prag HA, Murphy MP, Ramakrishnan L. Tumor necrosis factor induces pathogenic mitochondrial ROS in tuberculosis through reverse electron transport.
Science. 2022;376(6600):eabh2841.DOI:
10.1126/science.abh2841. PMID:
35737799. PMCID:
PMC7612974.
106. Lachmandas E, Boutens L, Ratter JM, Hijmans A, Hooiveld GJ, Joosten LA, et al. Microbial stimulation of different Toll-like receptor signalling pathways induces diverse metabolic programmes in human monocytes.
Nat Microbiol. 2016;2:16246.DOI:
10.1038/nmicrobiol.2016.246. PMID:
27991883.
107. Laval T, Chaumont L, Demangel C. Not too fat to fight: The emerging role of macrophage fatty acid metabolism in immunity to Mycobacterium tuberculosis.
Immunol Rev. 2021;301(1):84-97.DOI:
10.1111/imr.12952. PMID:
33559209.
108. Chandra P, He L, Zimmerman M, Yang G, Koster S, Ouimet M, et al. Inhibition of Fatty Acid Oxidation Promotes Macrophage Control of Mycobacterium tuberculosis.
mBio. 2020;11(4):e01139-20.DOI:
10.1128/mBio.01139-20. PMID:
32636249. PMCID:
PMC7343992.
109. Genoula M, Marin Franco JL, Maio M, Dolotowicz B, Ferreyra M, Milillo MA, et al. Fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but Mycobacterium tuberculosis counteracts this process via HIF-1alpha activation.
PLoS Pathog. 2020;16(10):e1008929.DOI:
10.1371/journal.ppat.1008929. PMID:
33002063. PMCID:
PMC7553279.
110. Itoh H, Matsuo H, Kitamura N, Yamamoto S, Higuchi T, Takematsu H, et al. Enhancement of neutrophil autophagy by an IVIG preparation against multidrug-resistant bacteria as well as drug-sensitive strains.
J Leukoc Biol. 2015;98(1):107-117.DOI:
10.1189/jlb.4A0813-422RRR. PMID:
25908735. PMCID:
PMC4467167.
111. Zhang S, Huang X, Xiu H, Zhang Z, Zhang K, Cai J, et al. The attenuation of Th1 and Th17 responses via autophagy protects against methicillin-resistant Staphylococcus aureus-induced sepsis.
Microbes Infect. 2021;23(8):104833.DOI:
10.1016/j.micinf.2021.104833. PMID:
33930602.
112. Sapkota A, Park EJ, Kim YJ, Heo JB, Nguyen TQ, Heo BE, et al. The autophagy-targeting compound V46 enhances antimicrobial responses to Mycobacteroides abscessus by activating transcription factor EB.
Biomed Pharmacother. 2024;179:117313.DOI:
10.1016/j.biopha.2024.117313. PMID:
39167844.
113. Kim YJ, Park EJ, Lee SH, Silwal P, Kim JK, Yang JS, et al. Dimethyl itaconate is effective in host-directed antimicrobial responses against mycobacterial infections through multifaceted innate immune pathways.
Cell Biosci. 2023;13(1):49.DOI:
10.1186/s13578-023-00992-x. PMID:
36882813. PMCID:
PMC9993662.