1. Bennett JM, Reeves G, Billman GE, Sturmberg JP. Inflammation-nature’s way to efficiently respond to all types of challenges: implications for understanding and managing “the epidemic” of chronic diseases. Front Med (Lausanne). 2018; Nov. 5:316.

2. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2017; Dec. 9(6):7204–18.

3. Park DY, Choi JH, Kim DK, Jung YG, Mun SJ, Min HJ, et al. Clinical practice guideline: nasal irrigation for chronic rhinosinusitis in adults. Clin Exp Otorhinolaryngol. 2022; Feb. 15(1):5–23.

4. Kim JS, Kim S, Moon TH, Park S, Kim SH, Kim S, et al. Effect of occupational noise exposure on the prevalence of benign vocal fold lesions: a nationwide population-based study. Clin Exp Otorhinolaryngol. 2023; Feb. 16(1):87–94.

5. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008; Dec. 8(12):958–69.

6. Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol. 2020; Jun. 877:173090.

7. Chaterjee O, Sur D. Artificially induced in situ macrophage polarization: an emerging cellular therapy for immuno-inflammatory diseases. Eur J Pharmacol. 2023; Oct. 957:176006.

8. Hamblin MR, Nelson ST, Strahan JR. Photobiomodulation and cancer: what is the truth. Photomed Laser Surg. 2018; May. 36(5):241–5.

9. Szymczyszyn A, Doroszko A, Szahidewicz-Krupska E, Rola P, Gutherc R, Jasiczek J, et al. Effect of the transdermal low-level laser therapy on endothelial function. Lasers Med Sci. 2016; Sep. 31(7):1301–7.

10. Dompe C, Moncrieff L, Matys J, Grzech-Lesniak K, Kocherova I, Bryja A, et al. Photobiomodulation-underlying mechanism and clinical applications. J Clin Med. 2020; Jun. 9(6):1724.

11. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008; Jul. 454(7203):428–35.

12. Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, RooseGirma M, et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature. 2006; Mar. 440(7081):228–32.

13. Medzhitov R, Janeway CA. Innate immunity: the virtues of a nonclonal system of recognition. Cell. 1997; Oct. 91(3):295–8.

14. Rock KL, Kono H. The inflammatory response to cell death. Annu Rev Pathol. 2008; Feb. 3:99–126.

15. Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007; Jan. 81(1):1–5.

16. Julius D, Basbaum AI. Molecular mechanisms of nociception. Nature. 2001; Sep. 413(6852):203–10.

17. Shin SH, Yoo JE, Jung J, Choi JY, Bae SH. Inflammatory monocytes infiltrate the spiral ligament and migrate to the basilar membrane after noise exposure. Clin Exp Otorhinolaryngol. 2022; May. 15(2):153–9.

18. Zhao H, Wu L, Yan G, Chen Y, Zhou M, Wu Y, et al. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther. 2021; Jul. 6(1):263.

19. Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation. Nat Rev Immunol. 2007; Oct. 7(10):803–15.

20. Ross EA, Devitt A, Johnson JR. Macrophages: the good, the bad, and the gluttony. Front Immunol. 2021; Aug. 12:708186.
21. Yamamoto M, Takeda K. Current views of toll-like receptor signaling pathways. Gastroenterol Res Pract. 2010; 2010:240365.

22. Czerkies M, Kwiatkowska K. Toll-like receptors and their contribution to innate immunity: focus on TLR4 activation by Lipopolysaccharide. Med J Cell Biol. 2014; Mar. 4(1):1–23.

23. Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001; Aug. 2(8):675–80.

24. Ullah MO, Sweet MJ, Mansell A, Kellie S, Kobe B. TRIF-dependent TLR signaling, its functions in host defense and inflammation, and its potential as a therapeutic target. J Leukoc Biol. 2016; Jul. 100(1):27–45.
25. Sharma S, tenOever BR, Grandvaux N, Zhou GP, Lin R, Hiscott J. Triggering the interferon antiviral response through an IKK-related pathway. Science. 2003; May. 300(5622):1148–51.

26. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, et al. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol. 2003; May. 4(5):491–6.

27. Hoffmann A, Natoli G, Ghosh G. Transcriptional regulation via the NF-kappaB signaling module. Oncogene. 2006; Oct. 25(51):6706–16.

28. Moynagh PN. The NF-kappaB pathway. J Cell Sci. 2005; Oct. 118(Pt 20):4589–92.
29. Frejo L, Lopez-Escamez JA. Cytokines and inflammation in Meniere disease. Clin Exp Otorhinolaryngol. 2022; Feb. 15(1):49–59.

30. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017; 2:17023.

31. Hayden MS, Ghosh S. NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev. 2012; Feb. 26(3):203–34.

32. Walker JG, Smith MD. The Jak-STAT pathway in rheumatoid arthritis. J Rheumatol. 2005; Sep. 32(9):1650–3.
33. Hu X, Li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther. 2021; Nov. 6(1):402.

34. O’Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med. 2015; 66:311–28.

35. Xue C, Yao Q, Gu X, Shi Q, Yuan X, Chu Q, et al. Evolving cognition of the JAK-STAT signaling pathway: autoimmune disorders and cancer. Signal Transduct Target Ther. 2023; May. 8(1):204.

36. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001; Apr. 22(2):153–83.

37. Kaminska B. MAPK signalling pathways as molecular targets for anti-inflammatory therapy: from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta. 2005; Dec. 1754(1-2):253–62.
38. Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y, Hu LL. ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 2020; Mar. 19(3):1997–2007.
39. Thevenin AF, Zony CL, Bahnson BJ, Colman RF. Activation by phosphorylation and purification of human c-Jun N-terminal kinase (JNK) isoforms in milligram amounts. Protein Expr Purif. 2011; Feb. 75(2):138–46.

40. Raingeaud J, Whitmarsh AJ, Barrett T, Derijard B, Davis RJ. MKK3-and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol Cell Biol. 1996; Mar. 16(3):1247–55.
41. Fujiwara N, Kobayashi K. Macrophages in inflammation. Curr Drug Targets Inflamm Allergy. 2005; Jun. 4(3):281–6.

42. Zhang Y, Zou J, Chen R. An M0 macrophage-related prognostic model for hepatocellular carcinoma. BMC Cancer. 2022; Jul. 22(1):791.

43. Li Y, Chen Z, Han J, Ma X, Zheng X, Chen J. Functional and therapeutic significance of tumor-associated macrophages in colorectal cancer. Front Oncol. 2022; Feb. 12:781233.

44. Jia Y, Wei Y. Modulators of MicroRNA function in the immune system. Int J Mol Sci. 2020; Mar. 21(7):2357.

45. Yi Y, Wang XR, Chen HT, Huang WY, Feng LX, Fang SB, et al. Development of a serum-free culture method for endothelial cells of the stria vascularis and their pro-inflammatory secretome changes induced by oxidative stress. Clin Exp Otorhinolaryngol. 2023; Feb. 16(1):37–48.

46. Lee HM, Son YS, Kim HS, Kim JY, Kim SH, Lee JH, et al. Effects of particulate matter exposure on the eustachian tube and middle ear mucosa of rats. Clin Exp Otorhinolaryngol. 2023; Aug. 16(3):225–35.

47. Chen S, Saeed AF, Liu Q, Jiang Q, Xu H, Xiao GG, et al. Macrophages in immunoregulation and therapeutics. Signal Transduct Target Ther. 2023; May. 8(1):207.

48. Lee KY. M1 and M2 polarization of macrophages: a mini-review. Med Biol Sci Eng. 2019; Jan. 2(1):1–5.

49. Choi YS, Na HG, Bae CH, Song SY, Kim YD. Ghrelin downregulates lipopolysaccharide/leptin-induced MUC5AC expression in human nasal epithelial cells. Clin Exp Otorhinolaryngol. 2023; Feb. 16(1):49–58.

50. Peng Y, Zhou M, Yang H, Qu R, Qiu Y, Hao J, et al. Regulatory mechanism of M1/M2 macrophage polarization in the development of autoimmune diseases. Mediators Inflamm. 2023; Jun. 2023:8821610.

51. Wang N, Liang H, Zen K. Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front Immunol. 2014; Nov. 5:614.

52. Viola A, Munari F, Sanchez-Rodriguez R, Scolaro T, Castegna A. The metabolic signature of macrophage responses. Front Immunol. 2019; Jul. 10:1462.

53. Chen Z, Han F, Du Y, Shi H, Zhou W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 2023; Feb. 8(1):70.

54. Newman MD, Stotland M, Ellis JI. The safety of nanosized particles in titanium dioxide- and zinc oxide-based sunscreens. J Am Acad Dermatol. 2009; Oct. 61(4):685–92.

55. Zhang M, Peng X, Liang X, Wang W, Yang Y, Xu F, et al. MicroRNA-145-5p regulates the epithelial-mesenchymal transition in nasal polyps by targeting smad3. Clin Exp Otorhinolaryngol. 2024; May. 17(2):122–36.

56. Peilin W, Ying P, Renyuan W, Zhuoxuan L, Zhenwu Y, Mai Z, et al. Size-dependent gold nanoparticles induce macrophage M2 polarization and promote intracellular clearance of Staphylococcus aureus to alleviate tissue infection. Mater Today Bio. 2023; Jun. 21:100700.

57. Lee CH, Kim YJ, Jang JH, Park JW. Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces. Nanotechnology. 2016; Feb. 27(8):085101.

58. Miao X, Leng X, Zhang Q. The current state of nanoparticle-induced macrophage polarization and reprogramming research. Int J Mol Sci. 2017; Feb. 18(2):336.

59. Kumah EA, Fopa RD, Harati S, Boadu P, Zohoori FV, Pak T. Human and environmental impacts of nanoparticles: a scoping review of the current literature. BMC Public Health. 2023; Jun. 23(1):1059.

60. Celik MO, Labuz D, Keye J, Glauben R, Machelska H. IL-4 induces M2 macrophages to produce sustained analgesia via opioids. JCI Insight. 2020; Feb. 5(4):e133093.

61. Yan H, Liu Y, Li X, Yu B, He J, Mao X, et al. Leucine alleviates cytokine storm syndrome by regulating macrophage polarization via the mTORC1/LXRα signaling pathway. Elife. 2024; Mar. 12:RP89750.

62. Kim M, Cho SW, Won TB, Rhee CS, Kim JW. Associations between systemic inflammatory markers based on blood cells and polysomnographic factors in obstructive sleep apnea. Clin Exp Otorhinolaryngol. 2023; May. 16(2):159–64.

63. Park JH, Moon JW, Yang HW, Song DJ, Park IH. Effect of air pollutants on allergic inflammation in structural cells of the nasal mucosa. Clin Exp Otorhinolaryngol. 2024; May. 17(2):147–59.

64. Jere SW, Houreld NN. Photobiomodulation (PBM): a therapeutic technique targeting fibroblast cell regeneration and survival in diabetic wounds. Front Photon. 2024; Jun. 5:1423280.

65. Liebert A, Capon W, Pang V, Vila D, Bicknell B, McLachlan C, et al. Photophysical mechanisms of photobiomodulation therapy as precision medicine. Biomedicines. 2023; Jan. 11(2):237.

66. Melin F, Nikolaev A, Hellwig P. Redox activity of cytochromes from the respiratory chain. In : Wandelt K, editor. Encyclopedia of interfacial chemistry: surface science and electrochemistry. Elsevier;2018.
67. Felician MC, Belotto R, Tardivo JP, Baptista MS, Martins WK. Photobiomodulation: cellular, molecular, and clinical aspects. J Photochem Photobiol. 2023; Oct. 17:100197.

68. Bathini M, Raghushaker CR, Mahato KK. The molecular mechanisms of action of photobiomodulation against neurodegenerative diseases: a systematic review. Cell ol Neurobiol. 2022; May. 42(4):955–71.

69. Zhang Z, Shen Q, Wu X, Zhang D, Xing D. Activation of PKA/SIRT1 signaling pathway by photobiomodulation therapy reduces Aβ levels in Alzheimer’s disease models. Aging Cell. 2020; Jan. 19(1):e13054.

70. Huang YY, Nagata K, Tedford CE, McCarthy T, Hamblin MR. Low-level laser therapy (LLLT) reduces oxidative stress in primary cortical neurons in vitro. J Biophotonics. 2013; Oct. 6(10):829–38.

71. Ma Y, Li P, Ju C, Zuo X, Li X, Ding T, et al. Photobiomodulation attenuates neurotoxic polarization of macrophages by inhibiting the Notch1-HIF-1α/NF-κB signalling pathway in mice with spinal cord injury. Front Immunol. 2022; Mar. 13:816952.

72. Woo K, Park SY, Padalhin A, Ryu HS, Abueva CD. Photobiomodulation enhances M2 macrophage polarization properties of tonsil-derived mesenchymal stem cells. J Photochem Photobiol B. 2023; Sep. 246:112770.

73. Ryu HS, Lim NK, Padalhin AR, Abueva C, Park SY, Chung PS, et al. Improved healing and macrophage polarization in oral ulcers treated with photobiomodulation (PBM). Lasers Surg Med. 2022; Apr. 54(4):600–10.

74. Tian T, Wang Z, Chen L, Xu W, Wu B. Photobiomodulation activates undifferentiated macrophages and promotes M1/M2 macrophage polarization via PI3K/AKT/mTOR signaling pathway. Lasers Med Sci. 2023; Mar. 38(1):86.

75. Pan Y, Zhang H, Liu Q, Wu H, Du S, Song W, et al. Photobiomodulation with 630-nm LED inhibits M1 macrophage polarization via STAT1 pathway against sepsis-induced acute lung injury. Photobiomodul Photomed Laser Surg. 2024; Feb. 42(2):148–58.

76. Hwang MH, Shin JH, Kim KS, Yoo CM, Jo GE, Kim JH, et al. Low level light therapy modulates inflammatory mediators secreted by human annulus fibrosus cells during intervertebral disc degeneration in vitro. Photochem Photobiol. 2015; Mar-Apr. 91(2):403–10.
77. Fernandes KP, Souza NH, Mesquita-Ferrari RA, Silva Dde F, Rocha LA, Alves AN, et al. Photobiomodulation with 660-nm and 780-nm laser on activated J774 macrophage-like cells: effect on M1 inflammatory markers. J Photochem Photobiol B. 2015; Dec. 153:344–51.

78. Silva IH, de Andrade SC, de Faria AB, Fonseca DD, Gueiros LA, Carvalho AA, et al. Increase in the nitric oxide release without changes in cell viability of macrophages after laser therapy with 660 and 808 nm lasers. Lasers Med Sci. 2016; Dec. 31(9):1855–62.

79. de Loura Santana C, de Fatima Teixeira Silva D, de Souza AP, Jacinto MV, Bussadori SK, Mesquita-Ferrari RA, et al. Effect of laser therapy on immune cells infiltrate after excisional wounds in diabetic rats. Lasers Surg Med. 2016; Jan. 48(1):45–51.

80. von Leden RE, Cooney SJ, Ferrara TM, Zhao Y, Dalgard CL, Anders JJ, et al. 808nm wavelength light induces a dose-dependent alteration in microglial polarization and resultant microglial induced neurite growth. Lasers Surg Med. 2013; Apr. 45(4):253–63.

81. Song JW, Li K, Liang ZW, Dai C, Shen XF, Gong YZ, et al. Low-level laser facilitates alternatively activated macrophage/microglia polarization and promotes functional recovery after crush spinal cord injury in rats. Sci Rep. 2017; Apr. 7(1):620.

82. Kobiela Ketz A, Byrnes KR, Grunberg NE, Kasper CE, Osborne L, Pryor B, et al. Characterization of macrophage/microglial activation and effect of photobiomodulation in the spared nerve injury model of neuropathic pain. Pain Med. 2017; May. 18(5):932–46.
