1. Mohana-Borges AVR, Chung CB. 2024; Imaging of rheumatic diseases affecting the lower limb. Rheum Dis Clin North Am. 50:463–82. DOI:
10.1016/j.rdc.2024.03.010. PMID:
38942580.
2. Braun J, Kiltz U, Baraliakos X. 2022; Significance of structural changes in the sacroiliac joints of patients with axial spondyloarthritis detected by MRI related to patients symptoms and functioning. Ann Rheum Dis. 81:11–4. DOI:
10.1136/annrheumdis-2021-221406. PMID:
34711586.
3. Filippucci E, Cipolletta E, Mashadi Mirza R, Carotti M, Giovagnoni A, Salaffi F, et al. 2019; Ultrasound imaging in rheumatoid arthritis. Radiol Med. 124:1087–100. DOI:
10.1007/s11547-019-01002-2. PMID:
30852792.
4. Piórkowski A, Obuchowicz R, Urbanik A, Strzelecki M. 2023; Advances in musculoskeletal imaging and their applications. J Clin Med. 12:6585. DOI:
10.3390/jcm12206585. PMID:
37892722. PMCID:
PMC10607761.
5. Deodhar A, Strand V, Kay J, Braun J. 2016; The term 'non-radiographic axial spondyloarthritis' is much more important to classify than to diagnose patients with axial spondyloarthritis. Ann Rheum Dis. 75:791–4. DOI:
10.1136/annrheumdis-2015-208852. PMID:
26768406.
6. van Tubergen A, Heuft-Dorenbosch L, Schulpen G, Landewé R, Wijers R, van der Heijde D, et al. 2003; Radiographic assessment of sacroiliitis by radiologists and rheumatologists: does training improve quality? Ann Rheum Dis. 62:519–25. DOI:
10.1136/ard.62.6.519. PMID:
12759287. PMCID:
PMC1754576.
7. van den Berg R, Lenczner G, Thévenin F, Claudepierre P, Feydy A, Reijnierse M, et al. 2015; Classification of axial SpA based on positive imaging (radiographs and/or MRI of the sacroiliac joints) by local rheumatologists or radiologists versus central trained readers in the DESIR cohort. Ann Rheum Dis. 74:2016–21. DOI:
10.1136/annrheumdis-2014-205432. PMID:
24962871.
8. Picazo-Sanchez P, Ortiz-Martin L. 2024; Analysing the impact of ChatGPT in research. Appl Intell. 54:4172–88. DOI:
10.1007/s10489-024-05298-0.
9. Yang J, Gao S, Qiu Y, Chen L, Li T, Dai B, et al. 2024. Jun. 16-22. Generalized predictive model for autonomous driving. Paper presented at: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: 14662–72. DOI:
10.1109/CVPR52733.2024.01389.
10. Xu H, Kim YJ, Sharaf A, Awadalla HH. 2023. A paradigm shift in machine translation: boosting translation performance of large language models.
https://doi.org/10.48550/arXiv.2309.11674. cited 2024 Oct 24.
13. Koetzier LR, Mastrodicasa D, Szczykutowicz TP, van der Werf NR, Wang AS, Sandfort V, et al. 2023; Deep learning image reconstruction for CT: technical principles and clinical prospects. Radiology. 306:e221257. DOI:
10.1148/radiol.221257. PMID:
36719287. PMCID:
PMC9968777.
14. Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P. 2021; Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Divers. 25:1315–60. DOI:
10.1007/s11030-021-10217-3. PMID:
33844136. PMCID:
PMC8040371.
15. Stoel BC, Staring M, Reijnierse M, van der Helm-van Mil AHM. 2024; Deep learning in rheumatological image interpretation. Nat Rev Rheumatol. 20:182–95. DOI:
10.1038/s41584-023-01074-5. PMID:
38332242.
16. Botnari A, Kadar M, Patrascu JM. 2024; A comprehensive evaluation of deep learning models on knee MRIs for the diagnosis and classification of meniscal tears: a systematic review and meta-analysis. Diagnostics (Basel). 14:1090. DOI:
10.3390/diagnostics14111090. PMID:
38893617. PMCID:
PMC11172202.
17. Fritz B, Fritz J. 2022; Artificial intelligence for MRI diagnosis of joints: a scoping review of the current state-of-the-art of deep learning-based approaches. Skeletal Radiol. 51:315–29. DOI:
10.1007/s00256-021-03830-8. PMID:
34467424. PMCID:
PMC8692303.
18. McMaster C, Bird A, Liew DFL, Buchanan RR, Owen CE, Chapman WW, et al. 2022; Artificial intelligence and deep learning for rheumatologists. Arthritis Rheumatol. 74:1893–905. DOI:
10.1002/art.42296. PMID:
35857865. PMCID:
PMC10092842.
20. Goodfellow I, Bengio Y, Courville A. 2016. Deep learning. MIT press;Cambridge:
21. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. 2016; Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 316:2402–10. DOI:
10.1001/jama.2016.17216. PMID:
27898976.
22. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. 2017; Dermatologist-level classification of skin cancer with deep neural networks. Nature. 542:115–8. DOI:
10.1038/nature21056. PMID:
28117445. PMCID:
PMC8382232.
23. Setio AAA, Traverso A, de Bel T, Berens MSN, Bogaard CVD, Cerello P, et al. 2017; Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge. Med Image Anal. 42:1–13. DOI:
10.1016/j.media.2017.06.015. PMID:
28732268.
24. McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. 2020; International evaluation of an AI system for breast cancer screening. Nature. 577:89–94. DOI:
10.1038/s41586-019-1799-6. PMID:
31894144.
25. Pérez-García F, Sparks R, Ourselin S. 2021; TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning. Comput Methods Programs Biomed. 208:106236. DOI:
10.1016/j.cmpb.2021.106236. PMID:
34311413. PMCID:
PMC8542803.
26. Ronneberger O, Fischer P, Brox T. 2015. Oct. 5-9. U-Net: convolutional networks for biomedical image segmentation. Paper presented at: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015. Munich, Germany: p. 234–41. DOI:
10.1007/978-3-319-24574-4_28.
27. Abràmoff MD, Lavin PT, Birch M, Shah N, Folk JC. 2018; Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med. 1:39. DOI:
10.1038/s41746-018-0040-6. PMID:
31304320. PMCID:
PMC6550188.
28. Wolterink JM, Leiner T, Viergever MA, Isgum I. 2017; Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging. 36:2536–45. DOI:
10.1109/TMI.2017.2708987. PMID:
28574346.
29. Radke KL, Kors M, Müller-Lutz A, Frenken M, Wilms LM, Baraliakos X, et al. 2022; Adaptive IoU thresholding for improving small object detection: a proof-of-concept study of hand erosions classification of patients with rheumatic arthritis on X-ray images. Diagnostics (Basel). 13:104. DOI:
10.3390/diagnostics13010104. PMID:
36611395. PMCID:
PMC9818241.
30. Murakami S, Hatano K, Tan J, Kim H, Aoki T. 2018; Automatic identification of bone erosions in rheumatoid arthritis from hand radiographs based on deep convolutional neural network. Multimed Tools Appl. 77:10921–37. DOI:
10.1007/s11042-017-5449-4.
31. Fung DL, Liu Q, Islam S, Lac L, O'Neil L, Hitchon CA, et al. 2023; Deep learning-based joint detection in rheumatoid arthritis hand radiographs. AMIA Jt Summits Transl Sci Proc. 2023:206–15.
32. Ma Y, Pan I, Kim SY, Wieschhoff GG, Andriole KP, Mandell JC. 2024; Deep learning discrimination of rheumatoid arthritis from osteoarthritis on hand radiography. Skeletal Radiol. 53:377–83. DOI:
10.1007/s00256-023-04408-2. PMID:
37530866.
33. Okita Y, Hirano T, Wang B, Nakashima Y, Minoda S, Nagahara H, et al. 2023; Automatic evaluation of atlantoaxial subluxation in rheumatoid arthritis by a deep learning model. Arthritis Res Ther. 25:181. DOI:
10.1186/s13075-023-03172-x. PMID:
37749583. PMCID:
PMC10518918.
34. Izumi K, Suzuki K, Hashimoto M, Endoh T, Doi K, Iwai Y, et al. 2023; Detecting hand joint ankylosis and subluxation in radiographic images using deep learning: a step in the development of an automatic radiographic scoring system for joint destruction. PLoS One. 18:e0281088. DOI:
10.1371/journal.pone.0281088. PMID:
36780446. PMCID:
PMC9925016.
35. Wang H, Ou Y, Fang W, Ambalathankandy P, Goto N, Ota G, et al. 2023; A deep registration method for accurate quantification of joint space narrowing progression in rheumatoid arthritis. Comput Med Imaging Graph. 108:102273. DOI:
10.1016/j.compmedimag.2023.102273. PMID:
37531811.
36. Üreten K, Erbay H, Maraş HH. 2020; Detection of rheumatoid arthritis from hand radiographs using a convolutional neural network. Clin Rheumatol. 39:969–74. DOI:
10.1007/s10067-019-04487-4. PMID:
30850962.
37. Hirano T, Nishide M, Nonaka N, Seita J, Ebina K, Sakurada K, et al. 2019; Development and validation of a deep-learning model for scoring of radiographic finger joint destruction in rheumatoid arthritis. Rheumatol Adv Pract. 3:rkz047. DOI:
10.1093/rap/rkz047. PMID:
31872173. PMCID:
PMC6921374.
38. Rohrbach J, Reinhard T, Sick B, Dürr O. 2019; Bone erosion scoring for rheumatoid arthritis with deep convolutional neural networks. Comput Electr Eng. 78:472–81. DOI:
10.1016/j.compeleceng.2019.08.003.
39. Terslev L, Naredo E, Aegerter P, Wakefield RJ, Backhaus M, Balint P, et al. 2017; Scoring ultrasound synovitis in rheumatoid arthritis: a EULAR-OMERACT ultrasound taskforce-part 2: reliability and application to multiple joints of a standardised consensus-based scoring system. RMD Open. 3:e000427. DOI:
10.1136/rmdopen-2016-000427. PMID:
28948984. PMCID:
PMC5597800.
40. D'Agostino MA, Terslev L, Aegerter P, Backhaus M, Balint P, Bruyn GA, et al. 2017; Scoring ultrasound synovitis in rheumatoid arthritis: a EULAR-OMERACT ultrasound taskforce-part 1: definition and development of a standardised, consensus-based scoring system. RMD Open. 3:e000428. DOI:
10.1136/rmdopen-2016-000428. PMID:
28948983. PMCID:
PMC5597799.
41. Tang J, Jin Z, Zhou X, Zhang W, Wu M, Shen Q, et al. 2019; Enhancing convolutional neural network scheme for rheumatoid arthritis grading with limited clinical data. Chin Phys B. 28:038701. DOI:
10.1088/1674-1056/28/3/038701.
42. Andersen JKH, Pedersen JS, Laursen MS, Holtz K, Grauslund J, Savarimuthu TR, et al. 2019; Neural networks for automatic scoring of arthritis disease activity on ultrasound images. RMD Open. 5:e000891. DOI:
10.1136/rmdopen-2018-000891. PMID:
30997154. PMCID:
PMC6443126.
43. Christensen ABH, Just SA, Andersen JKH, Savarimuthu TR. 2020; Applying cascaded convolutional neural network design further enhances automatic scoring of arthritis disease activity on ultrasound images from rheumatoid arthritis patients. Ann Rheum Dis. 79:1189–93. DOI:
10.1136/annrheumdis-2019-216636. PMID:
32503859.
44. He X, Wang M, Zhao C, Wang Q, Zhang R, Liu J, et al. 2024; Deep learning-based automatic scoring models for the disease activity of rheumatoid arthritis based on multimodal ultrasound images. Rheumatology (Oxford). 63:866–73. DOI:
10.1093/rheumatology/kead366. PMID:
37471602.
45. Hemalatha RJ, Vijaybaskar V, Thamizhvani TR. 2019; Automatic localization of anatomical regions in medical ultrasound images of rheumatoid arthritis using deep learning. Proc Inst Mech Eng H. 233:657–67. DOI:
10.1177/0954411919845747. PMID:
31017534.
46. Wong LM, Shi L, Xiao F, Griffith JF. 2019; Fully automated segmentation of wrist bones on T2-weighted fat-suppressed MR images in early rheumatoid arthritis. Quant Imaging Med Surg. 9:579–89. DOI:
10.21037/qims.2019.04.03. PMID:
31143649. PMCID:
PMC6511720.
47. Crowley AR, Dong J, McHaffie A, Clarke AW, Reeves Q, Williams M, et al. 2011; Measuring bone erosion and edema in rheumatoid arthritis: a comparison of manual segmentation and RAMRIS methods. J Magn Reson Imaging. 33:364–71. DOI:
10.1002/jmri.22425. PMID:
21274978.
48. Schlereth M, Mutlu MY, Utz J, Bayat S, Heimann T, Qiu J, et al. 2024; Deep learning-based classification of erosion, synovitis and osteitis in hand MRI of patients with inflammatory arthritis. RMD Open. 10:e004273. DOI:
10.1136/rmdopen-2024-004273. PMID:
38886001. PMCID:
PMC11184189.
49. Adams LC, Bressem KK, Ziegeler K, Vahldiek JL, Poddubnyy D. 2024; Artificial intelligence to analyze magnetic resonance imaging in rheumatology. Joint Bone Spine. 91:105651. DOI:
10.1016/j.jbspin.2023.105651. PMID:
37797827.
50. Shamonin D, LI Y, Hassanzadeh T, Bakker ME, Reijnierse M, Van der Helm van Mil A, et al. 2023; Quantification of tenosynovitis in RA from wrist MRIs, based on deep learning. Ann Rheum Dis. 82(Suppl 1):770–1. DOI:
10.1136/annrheumdis-2023-eular.2251.
51. Li Y, Shamonin D, Hassanzadeh T, Reijnierse M, Van der Helm van Mil A, Stoel B. 2023; Exploring the use of artificial intelligence in predicting rheumatoid arthritis, based on extremity MR scans in early arthritis and clinically suspect arthralgia patients. Ann Rheum Dis. 82(Suppl 1):1–2. DOI:
10.1136/annrheumdis-2023-eular.3531.
52. Hassanzadeh T, Shamonin DP, Li Y, Krijbolder DI, Reijnierse M, Van der Helm-van Mil AHM, et al. 2024; A deep learning-based comparative MRI model to detect inflammatory changes in rheumatoid arthritis. Biomed Signal Process Control. 88:105612. DOI:
10.1016/j.bspc.2023.105612.
53. Hassanzadeh T, Shamonin D, Li Y, Reijnierse M, Van der Helm-van Mil A, Stoel B. 2023; Treatment effects in wrist MRIs, determined by deep learning. BMJ. 82(Suppl 1):1286. DOI:
10.1136/annrheumdis-2023-eular.3600.
54. Ahalya RK, Almutairi FM, Snekhalatha U, Dhanraj V, Aslam SM. 2023; RANet: a custom CNN model and quanvolutional neural network for the automated detection of rheumatoid arthritis in hand thermal images. Sci Rep. 13:15638. DOI:
10.1038/s41598-023-42111-3. PMID:
37730717. PMCID:
PMC10511741.
55. Abedin J, Antony J, McGuinness K, Moran K, O'Connor NE, Rebholz-Schuhmann D, et al. 2019; Predicting knee osteoarthritis severity: comparative modeling based on patient's data and plain X-ray images. Sci Rep. 9:5761. DOI:
10.1038/s41598-019-42215-9. PMID:
30962509. PMCID:
PMC6453934.
56. Chen N, Feng Z, Li F, Wang H, Yu R, Jiang J, et al. 2023; A fully automatic target detection and quantification strategy based on object detection convolutional neural network YOLOv3 for one-step X-ray image grading. Anal Methods. 15:164–70. DOI:
10.1039/D2AY01526A. PMID:
36533422.
57. Chen P, Gao L, Shi X, Allen K, Yang L. 2019; Fully automatic knee osteoarthritis severity grading using deep neural networks with a novel ordinal loss. Comput Med Imaging Graph. 75:84–92. DOI:
10.1016/j.compmedimag.2019.06.002. PMID:
31238184. PMCID:
PMC9531250.
58. Liu B, Luo J, Huang H. 2020; Toward automatic quantification of knee osteoarthritis severity using improved Faster R-CNN. Int J Comput Assist Radiol Surg. 15:457–66. DOI:
10.1007/s11548-019-02096-9. PMID:
31938993.
59. Norman B, Pedoia V, Noworolski A, Link TM, Majumdar S. 2019; Applying densely connected convolutional neural networks for staging osteoarthritis severity from plain radiographs. J Digit Imaging. 32:471–7. DOI:
10.1007/s10278-018-0098-3. PMID:
30306418. PMCID:
PMC6499841.
60. Fei M, Lu S, Chung JH, Hassan S, Elsissy J, Schneiderman BA. 2024; Diagnosing the severity of knee osteoarthritis using regression scores from artificial intelligence convolution neural networks. Orthopedics. 47:e247–54. DOI:
10.3928/01477447-20240718-02. PMID:
39073041.
61. Westbury LD, Fuggle NR, Pereira D, Oka H, Yoshimura N, Oe N, et al. 2023; Machine learning as an adjunct to expert observation in classification of radiographic knee osteoarthritis: findings from the Hertfordshire Cohort Study. Aging Clin Exp Res. 35:1449–57. DOI:
10.1007/s40520-023-02428-5. PMID:
37202598. PMCID:
PMC10284967.
62. Touahema S, Zaimi I, Zrira N, Ngote MN, Doulhousne H, Aouial M. 2024; MedKnee: a new deep learning-based software for automated prediction of radiographic knee osteoarthritis. Diagnostics (Basel). 14:993. DOI:
10.3390/diagnostics14100993. PMID:
38786291. PMCID:
PMC11120168.
63. Lee DW, Song DS, Han HS, Ro DH. 2024; Accurate, automated classification of radiographic knee osteoarthritis severity using a novel method of deep learning: plug-in modules. Knee Surg Relat Res. 36:24. DOI:
10.1186/s43019-024-00228-3. PMID:
39138550. PMCID:
PMC11323666.
64. Naguib SM, Kassem MA, Hamza HM, Fouda MM, Saleh MK, Hosny KM. 2024; Automated system for classifying uni-bicompartmental knee osteoarthritis by using redefined residual learning with convolutional neural network. Heliyon. 10:e31017. DOI:
10.1016/j.heliyon.2024.e31017. PMID:
38803931. PMCID:
PMC11128872.
65. Subha B, Jeyakumar V, Deepa SN. 2024; Gaussian Aquila optimizer based dual convolutional neural networks for identification and grading of osteoarthritis using knee joint images. Sci Rep. 14:7225. DOI:
10.1038/s41598-024-57002-4. PMID:
38538646. PMCID:
PMC11349978.
66. Yin R, Chen H, Tao T, Zhang K, Yang G, Shi F, et al. 2024; Expanding from unilateral to bilateral: a robust deep learning-based approach for predicting radiographic osteoarthritis progression. Osteoarthritis Cartilage. 32:338–47. DOI:
10.1016/j.joca.2023.11.022. PMID:
38113994.
67. Leung K, Zhang B, Tan J, Shen Y, Geras KJ, Babb JS, et al. 2020; Prediction of total knee replacement and diagnosis of osteoarthritis by using deep learning on knee radiographs: data from the osteoarthritis initiative. Radiology. 296:584–93. DOI:
10.1148/radiol.2020192091. PMID:
32573386. PMCID:
PMC7434649.
68. Tiulpin A, Klein S, Bierma-Zeinstra SMA, Thevenot J, Rahtu E, Meurs JV, et al. 2019; Multimodal machine learning-based knee osteoarthritis progression prediction from plain radiographs and clinical data. Sci Rep. 9:20038. DOI:
10.1038/s41598-019-56527-3. PMID:
31882803. PMCID:
PMC6934728.
69. Banerjee S, Bhunia S, Schaefer G. 2011; Osteophyte detection for hand osteoarthritis identification in X-ray images using CNNs. Annu Int Conf IEEE Eng Med Biol Soc. 2011:6196–9. DOI:
10.1109/IEMBS.2011.6091530. PMID:
22255754.
70. Üreten K, Arslan T, Gültekin KE, Demir AND, Özer HF, Bilgili Y. 2020; Detection of hip osteoarthritis by using plain pelvic radiographs with deep learning methods. Skeletal Radiol. 49:1369–74. DOI:
10.1007/s00256-020-03433-9. PMID:
32248444.
71. Xue Y, Zhang R, Deng Y, Chen K, Jiang T. 2017; A preliminary examination of the diagnostic value of deep learning in hip osteoarthritis. PLoS One. 12:e0178992. DOI:
10.1371/journal.pone.0178992. PMID:
28575070. PMCID:
PMC5456368.
72. Magnéli M, Axenhus M, Fagrell J, Ling P, Gislén J, Demir Y, et al. 2024; Artificial intelligence can be used in the identification and classification of shoulder osteoarthritis and avascular necrosis on plain radiographs: a training study of 7,139 radiograph sets. Acta Orthop. 95:319–24. DOI:
10.2340/17453674.2024.40905. PMID:
38884536. PMCID:
PMC11182033.
73. Xu Y, Xiong H, Liu W, Liu H, Guo J, Wang W, et al. 2024; Development and validation of a deep-learning model to predict total hip replacement on radiographs. J Bone Joint Surg Am. 106:389–96. DOI:
10.2106/JBJS.23.00549. PMID:
38090967.
74. Jang SJ, Fontana MA, Kunze KN, Anderson CG, Sculco TP, Mayman DJ, et al. 2023; An interpretable machine learning model for predicting 10-year total hip arthroplasty risk. J Arthroplasty. 38(7S):S44–50.e6. DOI:
10.1016/j.arth.2023.03.087. PMID:
37019312.
75. Chen CC, Wu CT, Chen CPC, Chung CY, Chen SC, Lee MS, et al. 2023; Predicting the risk of total hip replacement by using a deep learning algorithm on plain pelvic radiographs: diagnostic study. JMIR Form Res. 7:e42788. DOI:
10.2196/42788. PMID:
37862084. PMCID:
PMC10625092.
76. Prasoon A, Petersen K, Igel C, Lauze F, Dam E, Nielsen M. 2013; Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. Med Image Comput Comput Assist Interv. 16(Pt 2):246–53. DOI:
10.1007/978-3-642-40763-5_31. PMID:
24579147.
77. Cheng R, Alexandridi NA, Smith RM, Shen A, Gandler W, McCreedy E, et al. 2020; Fully automated patellofemoral MRI segmentation using holistically nested networks: implications for evaluating patellofemoral osteoarthritis, pain, injury, pathology, and adolescent development. Magn Reson Med. 83:139–53. DOI:
10.1002/mrm.27920. PMID:
31402520. PMCID:
PMC6778709.
78. Gaj S, Yang M, Nakamura K, Li X. 2020; Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks. Magn Reson Med. 84:437–49. DOI:
10.1002/mrm.28111. PMID:
31793071.
79. Norman B, Pedoia V, Majumdar S. 2018; Use of 2D U-net convolutional neural networks for automated cartilage and meniscus segmentation of knee MR imaging data to determine relaxometry and morphometry. Radiology. 288:177–85. DOI:
10.1148/radiol.2018172322. PMID:
29584598. PMCID:
PMC6013406.
80. Panfilov E, Tiulpin A, Nieminen MT, Saarakkala S, Casula V. 2022; Deep learning-based segmentation of knee MRI for fully automatic subregional morphological assessment of cartilage tissues: data from the Osteoarthritis Initiative. J Orthop Res. 40:1113–24. DOI:
10.1002/jor.25150. PMID:
34324223.
81. Jaremko JL, Felfeliyan B, Hareendranathan A, Thejeel B, Vanessa QL, Østergaard M, et al. 2021; Volumetric quantitative measurement of hip effusions by manual versus automated artificial intelligence techniques: an OMERACT preliminary validation study. Semin Arthritis Rheum. 51:623–6. DOI:
10.1016/j.semarthrit.2021.03.009. PMID:
33781576.
82. Eckstein F, Chaudhari AS, Fuerst D, Gaisberger M, Kemnitz J, Baumgartner CF, et al. 2022; Detection of differences in longitudinal cartilage thickness loss using a deep-learning automated segmentation algorithm: data from the foundation for the national institutes of health biomarkers study of the osteoarthritis initiative. Arthritis Care Res (Hoboken). 74:929–36. DOI:
10.1002/acr.24539. PMID:
33337584. PMCID:
PMC9321555.
83. Guo J, Yan P, Qin Y, Liu M, Ma Y, Li J, et al. 2024; Automated measurement and grading of knee cartilage thickness: a deep learning-based approach. Front Med (Lausanne). 11:1337993. DOI:
10.3389/fmed.2024.1337993. PMID:
38487024. PMCID:
PMC10939064.
84. Felfeliyan B, Forkert ND, Hareendranathan A, Cornel D, Zhou Y, Kuntze G, et al. 2023; Self-supervised-RCNN for medical image segmentation with limited data annotation. Comput Med Imaging Graph. 109:102297. DOI:
10.1016/j.compmedimag.2023.102297. PMID:
37729826.
85. Pedoia V, Norman B, Mehany SN, Bucknor MD, Link TM, Majumdar S. 2019; 3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects. J Magn Reson Imaging. 49:400–10. DOI:
10.1002/jmri.26246. PMID:
30306701. PMCID:
PMC6521715.
86. Liu F, Zhou Z, Samsonov A, Blankenbaker D, Larison W, Kanarek A, et al. 2018; Deep learning approach for evaluating knee mr images: achieving high diagnostic performance for cartilage lesion detection. Radiology. 289:160–9. DOI:
10.1148/radiol.2018172986. PMID:
30063195. PMCID:
PMC6166867.
87. Namiri NK, Lee J, Astuto B, Liu F, Shah R, Majumdar S, et al. 2021; Deep learning for large scale MRI-based morphological phenotyping of osteoarthritis. Sci Rep. 11:10915. DOI:
10.1038/s41598-021-90292-6. PMID:
34035386. PMCID:
PMC8149826.
88. Hu J, Zheng C, Yu Q, Zhong L, Yu K, Chen Y, et al. 2023; DeepKOA: a deep-learning model for predicting progression in knee osteoarthritis using multimodal magnetic resonance images from the osteoarthritis initiative. Quant Imaging Med Surg. 13:4852–66. DOI:
10.21037/qims-22-1251. PMID:
37581080. PMCID:
PMC10423358.
89. Hu J, Peng J, Zhou Z, Zhao T, Zhong L, Yu K, et al. 2025; Associating knee osteoarthritis progression with temporal-regional graph convolutional network analysis on MR images. J Magn Reson Imaging. 61:378–91. DOI:
10.1002/jmri.29412. PMID:
38686707.
90. Talaat WM, Shetty S, Al Bayatti S, Talaat S, Mourad L, Shetty S, et al. 2023; An artificial intelligence model for the radiographic diagnosis of osteoarthritis of the temporomandibular joint. Sci Rep. 13:15972. DOI:
10.1038/s41598-023-43277-6. PMID:
37749161. PMCID:
PMC10519983.
91. Eşer G, Duman ŞB, Bayrakdar İŞ, Çelik Ö. 2023; Classification of temporomandibular joint osteoarthritis on cone beam computed tomography images using artificial intelligence system. J Oral Rehabil. 50:758–66. DOI:
10.1111/joor.13481. PMID:
37186400.
92. Masuda M, Soufi M, Otake Y, Uemura K, Kono S, Takashima K, et al. 2024; Automatic hip osteoarthritis grading with uncertainty estimation from computed tomography using digitally-reconstructed radiographs. Int J Comput Assist Radiol Surg. 19:903–15. DOI:
10.1007/s11548-024-03087-1. PMID:
38472690.
93. Overgaard BS, Christensen ABH, Terslev L, Savarimuthu TR, Just SA. 2024; Artificial intelligence model for segmentation and severity scoring of osteophytes in hand osteoarthritis on ultrasound images. Front Med (Lausanne). 11:1297088. DOI:
10.3389/fmed.2024.1297088. PMID:
38500949. PMCID:
PMC10944993.
94. Ramiro S, Nikiphorou E, Sepriano A, Ortolan A, Webers C, Baraliakos X, et al. 2023; ASAS-EULAR recommendations for the management of axial spondyloarthritis: 2022 update. Ann Rheum Dis. 82:19–34. DOI:
10.1136/ard-2023-223937. PMID:
36878690.
95. Faleiros MC, Nogueira-Barbosa MH, Dalto VF, Júnior JRF, Tenório APM, Luppino-Assad R, et al. 2020; Machine learning techniques for computer-aided classification of active inflammatory sacroiliitis in magnetic resonance imaging. Adv Rheumatol. 60:25. DOI:
10.1186/s42358-020-00126-8. PMID:
32381053.
96. Lee KH, Choi ST, Lee GY, Ha YJ, Choi SI. 2021; Method for diagnosing the bone marrow edema of sacroiliac joint in patients with axial spondyloarthritis using magnetic resonance image analysis based on deep learning. Diagnostics (Basel). 11:1156. DOI:
10.3390/diagnostics11071156. PMID:
34202607. PMCID:
PMC8303557.
97. Zheng Y, Bai C, Zhang K, Han Q, Guan Q, Liu Y, et al. 2023; Deep-learning based quantification model for hip bone marrow edema and synovitis in patients with spondyloarthritis based on magnetic resonance images. Front Physiol. 14:1132214. DOI:
10.3389/fphys.2023.1132214. PMID:
36935744. PMCID:
PMC10020192.
98. Ożga J, Wyka M, Raczko A, Tabor Z, Oleniacz Z, Korman M, et al. 2023; Performance of fully automated algorithm detecting bone marrow edema in sacroiliac joints. J Clin Med. 12:4852. DOI:
10.3390/jcm12144852. PMID:
37510967. PMCID:
PMC10381124.
99. Lee GE, Kim SH, Cho JC, Choi ST, Choi SI. 2023. Oct. 8-12. Text-guided cross-position attention for segmentation: case of medical image. Paper presented at: Medical Image Computing and Computer Assisted Intervention - MICCAI 2023. Vancouver, Canada: p. 537–46. DOI:
10.1007/978-3-031-43904-9_52.
100. Lee S, Jeon U, Lee JH, Kang S, Kim H, Lee J, et al. 2023; Artificial intelligence for the detection of sacroiliitis on magnetic resonance imaging in patients with axial spondyloarthritis. Front Immunol. 14:1278247. DOI:
10.3389/fimmu.2023.1278247. PMID:
38022576. PMCID:
PMC10676202.
101. Roels J, De Craemer AS, Renson T, de Hooge M, Gevaert A, Van Den Berghe T, et al. 2023; Machine learning pipeline for predicting bone marrow edema along the sacroiliac joints on magnetic resonance imaging. Arthritis Rheumatol. 75:2169–77. DOI:
10.1002/art.42650. PMID:
37410803.
102. Bordner A, Aouad T, Medina CL, Yang S, Molto A, Talbot H, et al. 2023; A deep learning model for the diagnosis of sacroiliitis according to Assessment of SpondyloArthritis International Society classification criteria with magnetic resonance imaging. Diagn Interv Imaging. 104:373–83. DOI:
10.1016/j.diii.2023.03.008. PMID:
37012131.
103. Han Q, Lu Y, Han J, Luo A, Huang L, Ding J, et al. 2022; Automatic quantification and grading of hip bone marrow oedema in ankylosing spondylitis based on deep learning. Mod Rheumatol. 32:968–73. DOI:
10.1093/mr/roab073. PMID:
34918143.
104. Bressem KK, Adams LC, Proft F, Hermann KGA, Diekhoff T, Spiller L, et al. 2022; Deep learning detects changes indicative of axial spondyloarthritis at MRI of sacroiliac joints. Radiology. 305:655–65. DOI:
10.1148/radiol.212526. PMID:
35943339.
105. Lin Y, Cao P, Chan SCW, Lee KH, Lau VWH, Chung HY. 2024; Deep learning algorithm of the SPARCC scoring system in SI joint MRI. J Magn Reson Imaging. 60:1390–9. DOI:
10.1002/jmri.29211. PMID:
38168061.
106. Triantafyllou M, Klontzas ME, Koltsakis E, Papakosta V, Spanakis K, Karantanas AH. 2023; Radiomics for the detection of active sacroiliitis using MR imaging. Diagnostics (Basel). 13:2587. DOI:
10.3390/diagnostics13152587. PMID:
37568950. PMCID:
PMC10416894.
107. Zhang K, Liu C, Pan J, Zhu Y, Li X, Zheng J, et al. 2024; Use of MRI-based deep learning radiomics to diagnose sacroiliitis related to axial spondyloarthritis. Eur J Radiol. 172:111347. DOI:
10.1016/j.ejrad.2024.111347. PMID:
38325189.
108. Li X, Lin Y, Xie Z, Lu Z, Song L, Ye Q, et al. 2024; Automatic segmentation of fat metaplasia on sacroiliac joint MRI using deep learning. Insights Imaging. 15:93. DOI:
10.1186/s13244-024-01659-y. PMID:
38530554. PMCID:
PMC10965870.
109. Lin Y, Chan SCW, Chung HY, Lee KH, Cao P. 2024; A deep neural network for MRI spinal inflammation in axial spondyloarthritis. Eur Spine J. 33:4125–34. DOI:
10.1007/s00586-023-08099-0. PMID:
38190004.
110. Bressem KK, Vahldiek JL, Adams L, Niehues SM, Haibel H, Rodriguez VR, et al. 2021; Deep learning for detection of radiographic sacroiliitis: achieving expert-level performance. Arthritis Res Ther. 23:106. DOI:
10.1186/s13075-021-02484-0. PMID:
33832519. PMCID:
PMC8028815.
111. Li H, Tao X, Liang T, Jiang J, Zhu J, Wu S, et al. 2023; Comprehensive AI-assisted tool for ankylosing spondylitis based on multicenter research outperforms human experts. Front Public Health. 11:1063633. DOI:
10.3389/fpubh.2023.1063633. PMID:
36844823. PMCID:
PMC9947660.
112. Üreten K, Maraş Y, Duran S, Gök K. 2023; Deep learning methods in the diagnosis of sacroiliitis from plain pelvic radiographs. Mod Rheumatol. 33:202–6. DOI:
10.1093/mr/roab124. PMID:
34888699.
113. Lee KH, Lee RW, Lee KH, Park W, Kwon SR, Lim MJ. 2023; The development and validation of an AI diagnostic model for sacroiliitis: a deep-learning approach. Diagnostics (Basel). 13:3643. DOI:
10.3390/diagnostics13243643. PMID:
38132228. PMCID:
PMC10743277.
114. Van Den Berghe T, Babin D, Chen M, Callens M, Brack D, Maes H, et al. 2023; Neural network algorithm for detection of erosions and ankylosis on CT of the sacroiliac joints: multicentre development and validation of diagnostic accuracy. Eur Radiol. 33:8310–23. DOI:
10.1007/s00330-023-09704-y. PMID:
37219619.
115. Liu L, Zhang H, Zhang W, Mei W, Huang R. 2024; Sacroiliitis diagnosis based on interpretable features and multi-task learning. Phys Med Biol. 69:045034. DOI:
10.1088/1361-6560/ad2010. PMID:
38237177.
116. Zhang K, Luo G, Li W, Zhu Y, Pan J, Li X, et al. 2023; Automatic image segmentation and grading diagnosis of sacroiliitis associated with AS using a deep convolutional neural network on CT images. J Digit Imaging. 36:2025–34. DOI:
10.1007/s10278-023-00858-1. PMID:
37268841. PMCID:
PMC10501961.
117. Baek IW, Jung SM, Park YJ, Park KS, Kim KJ. 2023; Quantitative prediction of radiographic progression in patients with axial spondyloarthritis using neural network model in a real-world setting. Arthritis Res Ther. 25:65. DOI:
10.1186/s13075-023-03050-6. PMID:
37081563. PMCID:
PMC10116698.
118. Joo YB, Baek IW, Park YJ, Park KS, Kim KJ. 2020; Machine learning-based prediction of radiographic progression in patients with axial spondyloarthritis. Clin Rheumatol. 39:983–91. DOI:
10.1007/s10067-019-04803-y. PMID:
31667645.
119. Garofoli R, Resche-Rigon M, Roux C, van der Heijde D, Dougados M, Moltó A. 2023; Machine-learning derived algorithms for prediction of radiographic progression in early axial spondyloarthritis. Clin Exp Rheumatol. 41:727–34. DOI:
10.55563/clinexprheumatol/mm2uzu. PMID:
36200930.
120. Koo BS, Jang M, Oh JS, Shin K, Lee S, Joo KB, et al. 2024; Machine learning models with time-series clinical features to predict radiographic progression in patients with ankylosing spondylitis. J Rheum Dis. 31:97–107. DOI:
10.4078/jrd.2023.0056. PMID:
38559800. PMCID:
PMC10973352.
121. Fabry V, Mamalet F, Laforet A, Capelle M, Acket B, Sengenes C, et al. 2022; A deep learning tool without muscle-by-muscle grading to differentiate myositis from facio-scapulo-humeral dystrophy using MRI. Diagn Interv Imaging. 103:353–9. DOI:
10.1016/j.diii.2022.01.012. PMID:
35292217.
122. Wang F, Zhou S, Hou B, Santini F, Yuan L, Guo Y, et al. 2023; Assessment of idiopathic inflammatory myopathy using a deep learning method for muscle T2 mapping segmentation. Eur Radiol. 33:2350–7. DOI:
10.1007/s00330-022-09254-9. PMID:
36396791. PMCID:
PMC9672653.
123. Garaiman A, Nooralahzadeh F, Mihai C, Gonzalez NP, Gkikopoulos N, Becker MO, et al. 2023; Vision transformer assisting rheumatologists in screening for capillaroscopy changes in systemic sclerosis: an artificial intelligence model. Rheumatology (Oxford). 62:2492–500. DOI:
10.1093/rheumatology/keac541. PMID:
36347487. PMCID:
PMC10321092.
124. Bharathi PG, Berks M, Dinsdale G, Murray A, Manning J, Wilkinson S, et al. 2023; A deep learning system for quantitative assessment of microvascular abnormalities in nailfold capillary images. Rheumatology (Oxford). 62:2325–9. DOI:
10.1093/rheumatology/kead026. PMID:
36651676. PMCID:
PMC10234192.
125. Le Gall A, Hoang-Thi TN, Porcher R, Dunogué B, Berezné A, Guillevin L, et al. 2024; Prognostic value of automated assessment of interstitial lung disease on CT in systemic sclerosis. Rheumatology (Oxford). 63:103–10. DOI:
10.1093/rheumatology/kead164. PMID:
37074923.
126. Klontzas ME, Vassalou EE, Spanakis K, Meurer F, Woertler K, Zibis A, et al. 2024; Deep learning enables the differentiation between early and late stages of hip avascular necrosis. Eur Radiol. 34:1179–86. DOI:
10.1007/s00330-023-10104-5. PMID:
37581656. PMCID:
PMC10853078.
127. Faghani S, Nicholas RG, Patel S, Baffour FI, Moassefi M, Rouzrokh P, et al. 2024; Development of a deep learning model for the automated detection of green pixels indicative of gout on dual energy CT scan. Res Diagn Interv Imaging. 9:100044. DOI:
10.1016/j.redii.2024.100044. PMID:
39076582. PMCID:
PMC11265492.
128. Smerilli G, Cipolletta E, Sartini G, Moscioni E, Di Cosmo M, Fiorentino MC, et al. 2022; Development of a convolutional neural network for the identification and the measurement of the median nerve on ultrasound images acquired at carpal tunnel level. Arthritis Res Ther. 24:38. DOI:
10.1186/s13075-022-02729-6. PMID:
35135598. PMCID:
PMC8822696.
129. Minopoulou I, Kleyer A, Yalcin-Mutlu M, Fagni F, Kemenes S, Schmidkonz C, et al. 2023; Imaging in inflammatory arthritis: progress towards precision medicine. Nat Rev Rheumatol. 19:650–65. DOI:
10.1038/s41584-023-01016-1. PMID:
37684361.
130. Waldstein SM, Seeböck P, Donner R, Sadeghipour A, Bogunović H, Osborne A, et al. 2020; Unbiased identification of novel subclinical imaging biomarkers using unsupervised deep learning. Sci Rep. 10:12954. DOI:
10.1038/s41598-020-69814-1. PMID:
32737379. PMCID:
PMC7395081.
131. GBD 2015 Healthcare Access and Quality Collaborators. 2017; Healthcare Access and Quality Index based on mortality from causes amenable to personal health care in 195 countries and territories, 1990-2015: a novel analysis from the Global Burden of Disease Study 2015. Lancet. 390:231–66. DOI:
10.1016/S0140-6736(17)30818-8. PMID:
28528753.
132. Boniol M, Kunjumen T, Nair TS, Siyam A, Campbell J, Diallo K. 2022; The global health workforce stock and distribution in 2020 and 2030: a threat to equity and 'universal' health coverage? BMJ Glob Health. 7:e009316. DOI:
10.1136/bmjgh-2022-009316. PMID:
35760437. PMCID:
PMC9237893.
134. Tjoa E, Guan C. 2021; A survey on explainable artificial intelligence (XAI): toward medical XAI. IEEE Trans Neural Netw Learn Syst. 32:4793–813. DOI:
10.1109/TNNLS.2020.3027314. PMID:
33079674.
136. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. 2017; A survey on deep learning in medical image analysis. Med Image Anal. 42:60–88. DOI:
10.1016/j.media.2017.07.005. PMID:
28778026.
137. Kiryu S, Akai H, Yasaka K, Tajima T, Kunimatsu A, Yoshioka N, et al. 2023; Clinical impact of deep learning reconstruction in MRI. Radiographics. 43:e220133. DOI:
10.1148/rg.220133. PMID:
37200221.
138. Abdalla M, Fine B. 2023; Hurdles to artificial intelligence deployment: noise in schemas and "gold" labels. Radiol Artif Intell. 5:e220056. DOI:
10.1148/ryai.220056. PMID:
37035427. PMCID:
PMC10077093.
140. Kim HE, Cosa-Linan A, Santhanam N, Jannesari M, Maros ME, Ganslandt T. 2022; Transfer learning for medical image classification: a literature review. BMC Med Imaging. 22:69. DOI:
10.1186/s12880-022-00793-7. PMID:
35418051. PMCID:
PMC9007400.
141. Qamar T, Bawany NZ. 2023; Understanding the black-box: towards interpretable and reliable deep learning models. PeerJ Comput Sci. 9:e1629. DOI:
10.7717/peerj-cs.1629. PMID:
38077598. PMCID:
PMC10702969.
142. Simonyan K, Vedaldi A, Zisserman A. 2014. Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv [Online].
https://doi.org/10.48550/arXiv.1312.6034. cited 2024 Oct 24.
143. Bach S, Binder A, Montavon G, Klauschen F, Müller KR, Samek W. 2015; On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS One. 10:e0130140. DOI:
10.1371/journal.pone.0130140. PMID:
26161953. PMCID:
PMC4498753.
144. Ho SY, Phua K, Wong L, Bin Goh WW. 2020; Extensions of the external validation for checking learned model interpretability and generalizability. Patterns (N Y). 1:100129. DOI:
10.1016/j.patter.2020.100129. PMID:
33294870. PMCID:
PMC7691387.
145. Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. 2019; Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 17:195. DOI:
10.1186/s12916-019-1426-2. PMID:
31665002. PMCID:
PMC6821018.
146. Eche T, Schwartz LH, Mokrane FZ, Dercle L. 2021; Toward generalizability in the deployment of artificial intelligence in radiology: role of computation stress testing to overcome underspecification. Radiol Artif Intell. 3:e210097. DOI:
10.1148/ryai.2021210097. PMID:
34870222. PMCID:
PMC8637230.
147. Li Z, Kamnitsas K, Glocker B. 2021; Analyzing overfitting under class imbalance in neural networks for image segmentation. IEEE Trans Med Imaging. 40:1065–77. DOI:
10.1109/TMI.2020.3046692. PMID:
33351758.
148. Choi YS. 2017; Concepts, characteristics, and clinical validation of IBM Watson for oncology. Hanyang Med Rev. 37:49–60. DOI:
10.7599/hmr.2017.37.2.49.
149. England BR, Tiong BK, Bergman MJ, Curtis JR, Kazi S, Mikuls TR, et al. 2019; 2019 update of the American College of Rheumatology recommended rheumatoid arthritis disease activity measures. Arthritis Care Res (Hoboken). 71:1540–55. DOI:
10.1002/acr.24042. PMID:
31709779. PMCID:
PMC6884664.
150. Yu KH, Healey E, Leong TY, Kohane IS, Manrai AK. 2024; Medical artificial intelligence and human values. N Engl J Med. 390:1895–904. DOI:
10.1056/NEJMra2214183. PMID:
38810186.
151. Naik N, Hameed BMZ, Shetty DK, Swain D, Shah M, Paul R, et al. 2022; Legal and ethical consideration in artificial intelligence in healthcare: who takes responsibility? Front Surg. 9:862322. DOI:
10.3389/fsurg.2022.862322. PMID:
35360424. PMCID:
PMC8963864.
152. Shaw J, Ali J, Atuire CA, Cheah PY, Español AG, Gichoya JW, et al. 2024; Research ethics and artificial intelligence for global health: perspectives from the global forum on bioethics in research. BMC Med Ethics. 25:46. DOI:
10.1186/s12910-024-01044-w. PMID:
38637857. PMCID:
PMC11025232.
153. Caruso PF, Greco M, Ebm C, Angelotti G, Cecconi M. 2023; Implementing artificial intelligence: assessing the cost and benefits of algorithmic decision-making in critical care. Crit Care Clin. 39:783–93. DOI:
10.1016/j.ccc.2023.03.007. PMID:
37704340.