1. Li F, Gorji R, Allott G, Modes K, Lunn R, Yang ZJ. The usefulness of intraoperative neurophysiological monitoring in cervical spine surgery: a retrospective analysis of 200 consecutive patients. J Neurosurg Anesthesiol. 2012; 24:185–90. DOI:
10.1097/ana.0b013e318255ec8f. PMID:
22525331.
2. Martin DP, Bhalla T, Thung A, Rice J, Beebe A, Samora W, et al. A preliminary study of volatile agents or total intravenous anesthesia for neurophysiological monitoring during posterior spinal fusion in adolescents with idiopathic scoliosis. Spine (Phila Pa 1976). 2014; 39:E1318–24. DOI:
10.1097/brs.0000000000000550. PMID:
25099322.
3. Banoub M, Tetzlaff JE, Schubert A. Pharmacologic and physiologic influences affecting sensory evoked potentials: implications for perioperative monitoring. Anesthesiology. 2003; 99:716–37. DOI:
10.1097/00000542-200309000-00029. PMID:
12960558.
4. Vaugha DJ, Thornton C, Wright DR, Fernandes JR, Robbins P, Doré C, et al. Effects of different concentrations of sevoflurane and desflurane on subcortical somatosensory evoked responses in anaesthetized, non-stimulated patients. Br J Anaesth. 2001; 86:59–62. DOI:
10.1093/bja/86.1.59. PMID:
11575411.
5. Wakasugi M, Hirota K, Roth SH, Ito Y. The effects of general anesthetics on excitatory and inhibitory synaptic transmission in area CA1 of the rat hippocampus in vitro. Anesth Analg. 1999; 88:676–80. DOI:
10.1213/00000539-199903000-00039. PMID:
10072027.
6. Hasan MS, Tan JK, Chan CY, Kwan MK, Karim FS, Goh KJ. Comparison between effect of desflurane/remifentanil and propofol/remifentanil anesthesia on somatosensory evoked potential monitoring during scoliosis surgery-A randomized controlled trial. J Orthop Surg (Hong Kong). 2018; 26:2309499018789529. DOI:
10.1177/2309499018789529. PMID:
30058437.
7. Hargreaves SJ, Watt JW. Intravenous anaesthesia and repetitive transcranial magnetic stimulation monitoring in spinal column surgery. Br J Anaesth. 2005; 94:70–3. DOI:
10.1093/bja/aeh284. PMID:
15465838.
8. Tanaka M, Shigematsu H, Kawaguchi M, Hayashi H, Takatani T, Iwata E, et al. Muscle-evoked potentials after electrical stimulation to the brain in patients undergoing spinal surgery are less affected by anesthetic fade with constant-voltage stimulation than with constant-current stimulation. Spine (Phila Pa 1976). 2019; 44:1492–8. DOI:
10.1097/brs.0000000000003166. PMID:
31609917.
9. Schüttler J, Eisenried A, Lerch M, Fechner J, Jeleazcov C, Ihmsen H. Pharmacokinetics and pharmacodynamics of remimazolam (CNS 7056) after continuous infusion in healthy male volunteers: part i. Pharmacokinetics and clinical pharmacodynamics. Anesthesiology. 2020; 132:636–51. DOI:
10.1097/aln.0000000000003103. PMID:
31972655.
10. Eisenried A, Schüttler J, Lerch M, Ihmsen H, Jeleazcov C. Pharmacokinetics and pharmacodynamics of remimazolam (CNS 7056) after continuous infusion in healthy male volunteers: part ii. Pharmacodynamics of electroencephalogram effects. Anesthesiology. 2020; 132:652–66. DOI:
10.1097/aln.0000000000003102. PMID:
31972657.
11. Cardia L. Remimazolam: an ultrashort-acting intravenous anesthetic suitable for general anesthesia. Minerva Anestesiol. 2021; 87:1059–63. DOI:
10.23736/s0375-9393.21.16006-7. PMID:
34337928.
12. Kim SH, Fechner J. Remimazolam - current knowledge on a new intravenous benzodiazepine anesthetic agent. Korean J Anesthesiol. 2022; 75:307–15. DOI:
10.4097/kja.22297. PMID:
35585830.
13. Kondo T, Toyota Y, Narasaki S, Watanabe T, Miyoshi H, Saeki N, et al. Intraoperative responses of motor evoked potentials to the novel intravenous anesthetic remimazolam during spine surgery: a report of two cases. JA Clin Rep. 2020; 6:97. DOI:
10.1186/s40981-020-00401-z. PMID:
33300097.
14. Aratani Y, Tokinaga Y, Tanioku T, Maruyama T, Kawamata T. A case of decreased amplitude in motor evoked potentials under remimazolam anesthesia. Cureus. 2022; 14:e27593. DOI:
10.7759/cureus.27593. PMID:
36059311.
15. Yamada S, Hayamizu K, Akiyama Y, Kimura Y, Hashimoto S, Mikuni N, et al. Effect of remimazolam on intraoperative neurophysiology monitoring of visual-evoked potential: a case series. J Anesth. 2023; 37:311–4. DOI:
10.1007/s00540-022-03159-z. PMID:
36602625.
16. Tanaka R, Sato A, Shinohara K, Shiratori T, Kiuchi C, Murakami T, et al. Comparison of sensory evoked potentials during neurosurgery under remimazolam anesthesia with those under propofol anesthesia. Minerva Anestesiol. 2022; 88:81–2. DOI:
10.23736/s0375-9393.21.15932-2. PMID:
34263593.
17. Schnider TW, Minto CF, Gambus PL, Andresen C, Goodale DB, Shafer SL, et al. The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology. 1998; 88:1170–82. DOI:
10.1097/00000542-199805000-00006. PMID:
9605675.
18. Minto CF, Schnider TW, Egan TD, Youngs E, Lemmens HJ, Gambus PL, et al. Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. I. Model development. Anesthesiology. 1997; 86:10–23. DOI:
10.1097/00000542-199701000-00004. PMID:
9009935.
19. Weinzierl MR, Reinacher P, Gilsbach JM, Rohde V. Combined motor and somatosensory evoked potentials for intraoperative monitoring: intra- and postoperative data in a series of 69 operations. Neurosurg Rev. 2007; 30:109–16. DOI:
10.1007/s10143-006-0061-5. PMID:
17221265.
20. Kim WH, Lee JJ, Lee SM, Park MN, Park SK, Seo DW, et al. Comparison of motor-evoked potentials monitoring in response to transcranial electrical stimulation in subjects undergoing neurosurgery with partial vs no neuromuscular block. Br J Anaesth. 2013; 110:567–76. DOI:
10.1093/bja/aes395. PMID:
23378247.
21. Hirabayashi K, Miyakawa J, Satomi K, Maruyama T, Wakano K. Operative results and postoperative progression of ossification among patients with ossification of cervical posterior longitudinal ligament. Spine (Phila Pa 1976). 1981; 6:354–64. DOI:
10.1097/00007632-198107000-00005. PMID:
6792717.
22. Peter CA. Using the standardized difference to compare the prevalence of a binary variable between two groups in observational research. Commun Stat Simul Comput. 2009; 38:1228–34. DOI:
10.1080/03610910902859574.
23. Bala E, Sessler DI, Nair DR, McLain R, Dalton JE, Farag E. Motor and somatosensory evoked potentials are well maintained in patients given dexmedetomidine during spine surgery. Anesthesiology. 2008; 109:417–25. DOI:
10.1097/aln.0b013e318182a467. PMID:
18719439.
24. Fehlings MG, Brodke DS, Norvell DC, Dettori JR. The evidence for intraoperative neurophysiological monitoring in spine surgery: does it make a difference? Spine (Phila Pa 1976). 2010; 35(9 Suppl):S37–46. DOI:
10.1097/brs.0b013e3181d8338e.
25. Thuet ED, Winscher JC, Padberg AM, Bridwell KH, Lenke LG, Dobbs MB, et al. Validity and reliability of intraoperative monitoring in pediatric spinal deformity surgery: a 23-year experience of 3436 surgical cases. Spine (Phila Pa 1976). 2010; 35:1880–6. DOI:
10.1097/brs.0b013e3181e53434. PMID:
20802388.
26. Thuet ED, Padberg AM, Raynor BL, Bridwell KH, Riew KD, Taylor BA, et al. Increased risk of postoperative neurologic deficit for spinal surgery patients with unobtainable intraoperative evoked potential data. Spine (Phila Pa 1976). 2005; 30:2094–103. DOI:
10.1097/01.brs.0000178845.61747.6a. PMID:
16166902.
27. Liu EH, Wong HK, Chia CP, Lim HJ, Chen ZY, Lee TL. Effects of isoflurane and propofol on cortical somatosensory evoked potentials during comparable depth of anaesthesia as guided by bispectral index. Br J Anaesth. 2005; 94:193–7. DOI:
10.1093/bja/aei003. PMID:
15516356.
28. Lotto ML, Banoub M, Schubert A. Effects of anesthetic agents and physiologic changes on intraoperative motor evoked potentials. J Neurosurg Anesthesiol. 2004; 16:32–42. DOI:
10.1097/00008506-200401000-00008. PMID:
14676568.
29. Clapcich AJ, Emerson RG, Roye DP Jr, Xie H, Gallo EJ, Dowling KC, et al. The effects of propofol, small-dose isoflurane, and nitrous oxide on cortical somatosensory evoked potential and bispectral index monitoring in adolescents undergoing spinal fusion. Anesth Analg. 2004; 99:1334–40. DOI:
10.1213/01.ane.0000134807.73615.5c. PMID:
15502027.
30. Imani F, Jafarian A, Hassani V, Khan ZH. Propofol-alfentanil vs propofol-remifentanil for posterior spinal fusion including wake-up test. Br J Anaesth. 2006; 96:583–6. DOI:
10.1093/bja/ael075. PMID:
16567343.
31. Vokes DE, Linskey ME, Armstrong WB. Propofol lipemia mimicking chyle leak during neck dissection. Head Neck. 2006; 28:1147–9. DOI:
10.1002/hed.20472. PMID:
16983690.
32. Pascoe PJ, Ilkiw JE, Frischmeyer KJ. The effect of the duration of propofol administration on recovery from anesthesia in cats. Vet Anaesth Analg. 2006; 33:2–7. DOI:
10.1111/j.1467-2995.2005.00216.x. PMID:
16412126.
33. Cravens GT, Packer DL, Johnson ME. Incidence of propofol infusion syndrome during noninvasive radiofrequency ablation for atrial flutter or fibrillation. Anesthesiology. 2007; 106:1134–8. DOI:
10.1097/01.anes.0000265421.40477.a3. PMID:
17525588.
35. Sloan TB, Fugina ML, Toleikis JR. Effects of midazolam on median nerve somatosensory evoked potentials. Br J Anaesth. 1990; 64:590–3. DOI:
10.1093/bja/64.5.590. PMID:
2354098.
36. Lyon R, Feiner J, Lieberman JA. Progressive suppression of motor evoked potentials during general anesthesia: the phenomenon of “anesthetic fade”. J Neurosurg Anesthesiol. 2005; 17:13–9. PMID:
15632537.
37. Sahinovic MM, Gadella MC, Shils J, Dulfer SE, Drost G. Anesthesia and intraoperative neurophysiological spinal cord monitoring. Curr Opin Anaesthesiol. 2021; 34:590–6. DOI:
10.1097/aco.0000000000001044. PMID:
34435602.
38. Doi M, Hirata N, Suzuki T, Morisaki H, Morimatsu H, Sakamoto A. Safety and efficacy of remimazolam in induction and maintenance of general anesthesia in high-risk surgical patients (ASA class III): results of a multicenter, randomized, double-blind, parallel-group comparative trial. J Anesth. 2020; 34:491–501. DOI:
10.1007/s00540-020-02776-w. PMID:
32303884.
39. Selner AN, Ivanov AA, Esfahani DR, Bhimani AD, Waseem F, Behbahani M, et al. Feasibility of full neuromuscular blockade during transcranial motor evoked potential monitoring of neurosurgical procedures. J Neurosurg Anesthesiol. 2022; 34:69–73. DOI:
10.1097/ana.0000000000000696. PMID:
32453091.
40. van Dongen EP, ter Beek HT, Schepens MA, Morshuis WJ, Langemeijer HJ, de Boer A, et al. Within-patient variability of myogenic motor-evoked potentials to multipulse transcranial electrical stimulation during two levels of partial neuromuscular blockade in aortic surgery. Anesth Analg. 1999; 88:22–7. DOI:
10.1213/00000539-199901000-00005. PMID:
9895060.
41. Sloan TB. Muscle relaxant use during intraoperative neurophysiologic monitoring. J Clin Monit Comput. 2013; 27:35–46. DOI:
10.1007/s10877-012-9399-0. PMID:
23015366.
42. Kim KM. Remimazolam: pharmacological characteristics and clinical applications in anesthesiology. Anesth Pain Med (Seoul). 2022; 17:1–11. DOI:
10.17085/apm.21115. PMID:
35139608.
43. Phoowanakulchai S, Hayashi H, Oi A, Takeshima Y, Takatani T, Kawaguchi M. Unilateral abnormality of initial motor-evoked potential in the upper limb detected during lumbar spine surgery: a case report. JA Clin Rep. 2024; 10:23. DOI:
10.1186/s40981-024-00708-1. PMID:
38598105.