초록
원발성 섬모운동장애는 유전적으로 이질적인 질환으로, 비정상적인 섬모 기능으로 인해 만성 호흡기 감염, 내장역위증 및 불임을 초래한다. 본 고찰은 원발성 섬모운동장애의 발병 기전, 임상적 증상, 진단 및 유전적 기초에 대한 포괄적인 개요를 제공하는 것을 목표로 한다.
Abstract
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder characterized by abnormal ciliary function, which may lead to health issues, including chronic respiratory infections, situs inversus, and infertility. This review aims to provide a comprehensive overview of the pathogenesis, clinical manifestations, diagnosis, and genetic basis of PCD.
원발성 섬모운동장애(primary ciliary dyskinesia, PCD)는 유전적 이질성을 지닌 상염색체 열성 유전 질환이다[1]. PCD는 1933년 만성 부비동염, 기관지확장증 및 내장역위증으로 특징지어진 카르타게너 증후군으로 기술되었다[2]. 이후 1976년 전자 현미경의 발전으로 이러한 환자들의 호흡기 섬모에서 dynein arm의 부재가 밝혀짐으로써 비운동성 섬모 증후군이라는 용어가 사용되다가 환경 요인에 의한 2차적인 원인과 구별하기 위해 PCD로 변경되었다[3]. PCD의 유병률은 출생아 1만 명당 1명에서 2만 명당 1명 사이로 추정되지만, 근친혼이 흔한 인구에서는 2,265명당 1명까지 높게 나타날 수 있다[4, 5].
섬모는 세포 표면에 있는 손가락 모양의 돌기로, 아홉 개의 미세소관 이중체가 원형으로 배열되어 있으며, 중앙에 한 쌍의 미세소관의 존재 여부에 따라 9+2 또는 9+0 구조를 이루고 있다[6]. 미세소관의 α 단량체에서 뻗어나와 있는 dynein arm은 ATPase를 포함하고 있어 섬모 운동에 필요한 미끄러짐 힘을 생성한다[7]. 9개의 미세소관 이중체는 nexin-dynein regulatory complexes (N-DRCs)에 의해 상호 연결되어 있으며 radial spoke (RS)를 통해서 central pair (CP)와 연결된다[8]. 이러한 구성 요소에 결함이 발생하게 되면 섬모 운동을 방해하여 PCD의 임상적 증상을 초래한다. 섬모의 구조를 Fig. 1에 도식화하였다.
섬모는 dynein arm의 유무에 따라 운동성 섬모와 비운동성 섬모로 나눌 수 있다[6]. 9+2 구조의 운동성 섬모는 상부 및 하부 호 흡기, 부비동, 중이, 중추 신경계의 뇌실, 나팔관 및 정자 편모에 위치하고 있으며, 9+0 구조의 운동성 섬모는 배아 발생 중 좌우 비대칭을 담당하는 nodal cilia에 위치한다[9-14]. 반면에 비운동성 섬모는 dynein arm이 없는 9+0 구조이며 감각 수용체의 역할을 한다[6].
PCD의 주요 임상 양상은 운동성 섬모의 결함에 의해 발생하기 때문에 PCD의 증상은 운동성 섬모가 존재하는 기관과 관련이 있으며 대표적으로 반복되는 호흡기 감염, 만성 부비동염, 만성 중이염, 불임, 수두증 및 장기역위증이 있다. 반복적인 호흡기 감염은 기관지확장증을 유발하며, 만성 부비동염과 중이염은 각각 후각상실과 청력 손실로 이어질 수 있다. 배아 발생 중 발생하는 좌우비대칭은 9+0 구조의 운동성 섬모가 담당하기 때문에 9+0 구조의 운동성 섬모에 존재하지 않는 구성요소인 RS, CA 및 N-DRC 결함이 있는 경우에는 장기역위증이 발생하지 않는다[15].
PCD의 진단은 전통적으로 투과전자현미경(transmission electron microscopy, TEM)을 통해 섬모 초미세구조 결함을 식별하는 것에 의존해왔다. Outer dynein arm (ODA)의 결함이 약 40%로 가장 많은 비율을 차지하고 그 뒤를 이어 ODA 결함과 inner dynein arm (IDA)이 함께 발생하는 경우(15%), CP 결함(5–20%), 그리고 IDA 단독 결함(<5%)이 있다[16]. Dynein arm과 CP의 결함과는 달리 N-DRC와 RS의 결함은 TEM에서 확인하기가 어려워 결함이 없는 것으로 오진될 가능성이 있다. 실제로 PCD 환자의 약 30%는 TEM에서 정상적인 섬모 초미세구조를 보이므로 추가 진단 방법이 필요하다[16, 17].
1999년 첫 PCD 원인 유전자인 DNAI1이 발견된 이후, 현재까지 50개 이상의 관련 유전자가 확인되었다(Table 1) [18, 19]. 이들 유전자는 섬모의 축삭 구조 단백질을 암호화하는 유전자뿐만 아니라 섬모의 사전 조립에 관여하는 세포질 단백질을 암호화하는 유전자도 포함한다. PCD의 유전적 이질성으로 인하여 현재까지 밝혀진 관련 유전자들은 전체 PCD 환자의 약 70%만을 설명할 수 있으며 약 20–30%의 PCD 환자에서는 아직까지 유전적 원인을 확인할 수 없다[20]. 가장 흔한 원인 유전자는 ODA 형성에 관여하는 DNAH5와 DNAI1이며 전체 PCD 환자의 30% 이상을 차지한다[21]. PCD의 원인 변이 중 대부분은 기능 상실 변이(nonsense, frameshift, canonical splice site variants)로 약 85%의 사례를 차지하며, 나머지 15%는 missense 변이이다[16]. PCD는 주로 상염색체 열성으로 유전되지만 예외적으로 FOXJ1과 TUBB4B는 상염색체 우성, PIH1D3, OFD1, RPGR은 X-연관 유전 방식을 따르는 것으로 알려져 있다[22-29].
RS는 CP와 주변 미세소관 사이의 조절 신호를 전달하는 T자형 구조로, 현재까지 6개의 RS 유전자가 발견되었다[33]. 여기에는 RSPH1, RSPH4, RSPH9, DNAJB13, RSPH3이 포함되며, 각각 RS head (RSPH1, RSPH4, RSPH9), RS neck (DNAJB13, NME5), RS stalk (RSPH3)를 암호화한다[34-38]. RS/CP 유전자에 결함이 있는 경우 TEM에서 9+0 또는 8+1 미세소관 배열 패턴 및 CP의 부재 소견을 보인다. HYDIN은 CP의 돌출부를 암호화하는 유전자이지만 돌출부의 변화는 TEM에서 확인하기에는 미세하여 대부분의 HYDIN 결함 환자는 TEM에서 정상적인 섬모 초미세구조를 보인다 [39]. CFAP74, CFAP221, SPEF2 유전자에 결함이 있는 경우에도 TEM에서 정상 소견을 보이는 것으로 알려져 있다[40-42].
REFERENCES
1. Fliegauf M, Benzing T, Omran H. 2007; When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol Cell Biol. 8:880–93. DOI: 10.1038/nrm2278. PMID: 17955020.


2. Kartagener M. 1933; On the pathogenesis of bronchiectasis (Zur Pathogenese der Bronchiektasien). Beiträge zur Klinik der Tuberkulose und spezifischen Tuberkulose-Forschung. 83:489–501. DOI: 10.1007/BF02141468.
3. Afzelius BA. 1976; A human syndrome caused by immotile cilia. Science. 193:317–9. DOI: 10.1126/science.1084576. PMID: 1084576.


4. Kuehni CE, Frischer T, Strippoli MP, Maurer E, Bush A, Nielsen KG, et al. ERS Task Force on Primary Ciliary Dyskinesia in Children. 2010; Factors influencing age at diagnosis of primary ciliary dyskinesia in European children. Eur Respir J. 36:1248–58. DOI: 10.1183/09031936.00001010. PMID: 20530032.


5. O'Callaghan C, Chetcuti P, Moya E. 2010; High prevalence of primary ciliary dyskinesia in a British Asian population. Arch Dis Child. 95:51–2. DOI: 10.1136/adc.2009.158493. PMID: 19720631.
6. Leigh MW, Pittman JE, Carson JL, Ferkol TW, Dell SD, Davis SD, et al. 2009; Clinical and genetic aspects of primary ciliary dyskinesia/Kartagener syndrome. Genet Med. 11:473–87. DOI: 10.1097/GIM.0b013e3181a53562. PMID: 19606528. PMCID: PMC3739704.


7. Schmidt H, Gleave ES, Carter AP. 2012; Insights into dynein motor domain function from a 3.3-Å crystal structure. Nat Struct Mol Biol. 19:492–7. , S1. DOI: 10.1038/nsmb.2272. PMID: 22426545. PMCID: PMC3393637.


8. Kurkowiak M, Ziętkiewicz E, Witt M. 2015; Recent advances in primary ciliary dyskinesia genetics. J Med Genet. 52:1–9. DOI: 10.1136/jmedgenet-2014-102755. PMID: 25351953. PMCID: PMC4285891.


9. Tissir F, Qu Y, Montcouquiol M, Zhou L, Komatsu K, Shi D, et al. 2010; Lack of cadherins Celsr2 and Celsr3 impairs ependymal ciliogenesis, leading to fatal hydrocephalus. Nat Neurosci. 13:700–7. DOI: 10.1038/nn.2555. PMID: 20473291.


10. Bylander A, Lind K, Goksör M, Billig H, Larsson DG. 2013; The classical progesterone receptor mediates the rapid reduction of fallopian tube ciliary beat frequency by progesterone. Reprod Biol Endocrinol. 11:33. DOI: 10.1186/1477-7827-11-33. PMID: 23651709. PMCID: PMC3651731.


11. Zariwala MA, Gee HY, Kurkowiak M, Al-Mutairi DA, Leigh MW, Hurd TW, et al. 2013; ZMYND10 is mutated in primary ciliary dyskinesia and interacts with LRRC6. Am J Hum Genet. 93:336–45. DOI: 10.1016/j.ajhg.2013.06.007. PMID: 23891469. PMCID: PMC3738827.
12. Ben Khelifa M, Coutton C, Zouari R, Karaouzène T, Rendu J, Bidart M, et al. 2014; Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella. Am J Hum Genet. 94:95–104. DOI: 10.1016/j.ajhg.2013.11.017. PMID: 24360805. PMCID: PMC3882734.
13. Yoshiba S, Shiratori H, Kuo IY, Kawasumi A, Shinohara K, Nonaka S, et al. 2012; Cilia at the node of mouse embryos sense fluid flow for left-right determination via Pkd2. Science. 338:226–31. DOI: 10.1126/science.1222538. PMID: 22983710. PMCID: PMC3711115.


14. Wang G, Yost HJ, Amack JD. 2013; Analysis of gene function and visualization of cilia-generated fluid flow in Kupffer's vesicle. J Vis Exp. 73:e50038. DOI: 10.3791/50038-v.


15. Knowles MR, Zariwala M, Leigh M. 2016; Primary ciliary dyskinesia. Clin Chest Med. 37:449–61. DOI: 10.1016/j.ccm.2016.04.008. PMID: 27514592. PMCID: PMC4988337.


16. Knowles MR, Daniels LA, Davis SD, Zariwala MA, Leigh MW. 2013; Primary ciliary dyskinesia. Recent advances in diagnostics, genetics, and characterization of clinical disease. Am J Respir Crit Care Med. 188:913–22. DOI: 10.1164/rccm.201301-0059CI. PMID: 23796196. PMCID: PMC3826280.


17. Boon M, Smits A, Cuppens H, Jaspers M, Proesmans M, Dupont LJ, et al. 2014; Primary ciliary dyskinesia: critical evaluation of clinical symptoms and diagnosis in patients with normal and abnormal ultrastructure. Orphanet J Rare Dis. 9:11. DOI: 10.1186/1750-1172-9-11. PMID: 24450482. PMCID: PMC4016480.


18. Despotes KA, Zariwala MA, Davis SD, Ferkol TW. 2024; Primary ciliary dyskinesia: a clinical review. Cells. 13:974. DOI: 10.3390/cells13110974. PMID: 38891105. PMCID: PMC11171568. PMID: bc5236c1dd8744cfb2385882a9fed055.


19. Keiser NW, Cant E, Sitaraman S, Shoemark A, Limberis MP. 2023; Restoring ciliary function: gene therapeutics for primary ciliary dyskinesia. Hum Gene Ther. 34:821–35. DOI: 10.1089/hum.2023.102. PMID: 37624733.


20. Lucas JS, Davis SD, Omran H, Shoemark A. 2020; Primary ciliary dyskinesia in the genomics age. Lancet Respir Med. 8:202–16. DOI: 10.1016/S2213-2600(19)30374-1. PMID: 31624012.


21. Djakow J, Svobodová T, Hrach K, Uhlík J, Cinek O, Pohunek P. 2012; Effectiveness of sequencing selected exons of DNAH5 and DNAI1 in diagnosis of primary ciliary dyskinesia. Pediatr Pulmonol. 47:864–75. DOI: 10.1002/ppul.22520. PMID: 22416021.
22. Shapiro AJ, Kaspy K, Daniels MLA, Stonebraker JR, Nguyen VH, Joyal L, et al. 2021; Autosomal dominant variants in FOXJ1 causing primary ciliary dyskinesia in two patients with obstructive hydrocephalus. Mol Genet Genomic Med. 9:e1726. DOI: 10.1002/mgg3.1726. PMID: 34132502. PMCID: PMC8372090. PMID: 88d3f62e6430487ba83e8d3d4331ea81.


23. Dodd DO, Mechaussier S, Yeyati PL, McPhie F, Anderson JR, Khoo CJ, et al. 2024; Ciliopathy patient variants reveal organelle-specific functions for TUBB4B in axonemal microtubules. Science. 384:eadf5489. DOI: 10.1126/science.adq2178.


24. Paff T, Loges NT, Aprea I, Wu K, Bakey Z, Haarman EG, et al. 2017; Mutations in PIH1D3 cause X-linked primary ciliary dyskinesia with outer and inner dynein arm defects. Am J Hum Genet. 100:160–8. DOI: 10.1016/j.ajhg.2016.11.019. PMID: 28041644. PMCID: PMC5223094.
25. Moore A, Escudier E, Roger G, Tamalet A, Pelosse B, Marlin S, et al. 2006; RPGR is mutated in patients with a complex X linked phenotype combining primary ciliary dyskinesia and retinitis pigmentosa. J Med Genet. 43:326–33. DOI: 10.1136/jmg.2005.034868. PMID: 16055928. PMCID: PMC2563225.
26. Zito I, Downes SM, Patel RJ, Cheetham ME, Ebenezer ND, Jenkins SA, et al. 2003; RPGR mutation associated with retinitis pigmentosa, impaired hearing, and sinorespiratory infections. J Med Genet. 40:609–15. DOI: 10.1136/jmg.40.8.609. PMID: 12920075. PMCID: PMC1735548.
27. Budny B, Chen W, Omran H, Fliegauf M, Tzschach A, Wisniewska M, et al. 2006; A novel X-linked recessive mental retardation syndrome comprising macrocephaly and ciliary dysfunction is allelic to oral-facialdigital type I syndrome. Hum Genet. 120:171–8. DOI: 10.1007/s00439-006-0210-5. PMID: 16783569.


28. Iannaccone A, Breuer DK, Wang XF, Kuo SF, Normando EM, Filippova E, et al. 2003; Clinical and immunohistochemical evidence for an X linked retinitis pigmentosa syndrome with recurrent infections and hearing loss in association with an RPGR mutation. J Med Genet. 40:e118. DOI: 10.1136/jmg.40.11.e118. PMID: 14627685. PMCID: PMC1735323.
29. Wallmeier J, Frank D, Shoemark A, Nöthe-Menchen T, Cindric S, Olbrich H, et al. 2019; De novo mutations in FOXJ1 result in a motile ciliopathy with hydrocephalus and randomization of left/right body asymmetry. Am J Hum Genet. 105:1030–9. DOI: 10.1016/j.ajhg.2019.09.022. PMID: 31630787. PMCID: PMC6849114.
30. Pennarun G, Escudier E, Chapelin C, Bridoux AM, Cacheux V, Roger G, et al. 1999; Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am J Hum Genet. 65:1508–19. DOI: 10.1086/302683. PMID: 10577904. PMCID: PMC1288361.
31. Omran H, Häffner K, Völkel A, Kuehr J, Ketelsen UP, Ross UH, et al. 2000; Homozygosity mapping of a gene locus for primary ciliary dyskinesia on chromosome 5p and identification of the heavy dynein chain DNAH5 as a candidate gene. Am J Respir Cell Mol Biol. 23:696–702. DOI: 10.1165/ajrcmb.23.5.4257. PMID: 11062149.


32. Bartoloni L, Blouin JL, Pan Y, Gehrig C, Maiti AK, Scamuffa N, et al. 2002; Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia. Proc Natl Acad Sci U S A. 99:10282–6. DOI: 10.1073/pnas.152337699. PMID: 12142464. PMCID: PMC124905.
33. Ibañez-Tallon I, Heintz N, Omran H. 2003; To beat or not to beat: roles of cilia in development and disease. Hum Mol Genet. 12(S1):R27–35. DOI: 10.1093/hmg/ddg061. PMID: 12668594.
34. Kott E, Legendre M, Copin B, Papon JF, Dastot-Le Moal F, Montantin G, et al. 2013; Loss-of-function mutations in RSPH1 cause primary ciliary dyskinesia with central-complex and radial-spoke defects. Am J Hum Genet. 93:561–70. DOI: 10.1016/j.ajhg.2013.07.013. PMID: 23993197. PMCID: PMC3769924.
35. Castleman VH, Romio L, Chodhari R, Hirst RA, de Castro SC, Parker KA, et al. 2009; Mutations in radial spoke head protein genes RSPH9 and RSPH4A cause primary ciliary dyskinesia with central-microtubularpair abnormalities. Am J Hum Genet. 84:197–209. DOI: 10.1016/j.ajhg.2009.01.011. PMID: 19200523. PMCID: PMC2668031.


36. El Khouri E, Thomas L, Jeanson L, Bequignon E, Vallette B, Duquesnoy P, et al. 2016; Mutations in DNAJB13, encoding an HSP40 family member, cause primary ciliary dyskinesia and male infertility. Am J Hum Genet. 99:489–500. DOI: 10.1016/j.ajhg.2016.06.022. PMID: 27486783. PMCID: PMC4974111.
37. Jeanson L, Copin B, Papon JF, Dastot-Le Moal F, Duquesnoy P, Montantin G, et al. 2015; RSPH3 mutations cause primary ciliary dyskinesia with central-complex defects and a near absence of radial spokes. Am J Hum Genet. 97:153–62. DOI: 10.1016/j.ajhg.2015.05.004. PMID: 26073779. PMCID: PMC4571005.
38. Cho EH, Huh HJ, Jeong I, Lee NY, Koh WJ, Park HC, et al. 2020; A nonsense variant in NME5 causes human primary ciliary dyskinesia with radial spoke defects. Clin Genet. 98:64–8. DOI: 10.1111/cge.13742. PMID: 32185794.
39. Olbrich H, Schmidts M, Werner C, Onoufriadis A, Loges NT, Raidt J, et al. 2012; Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am J Hum Genet. 91:672–84. DOI: 10.1016/j.ajhg.2012.08.016. PMID: 23022101. PMCID: PMC3484652.
40. Biebach L, Cindrić S, Koenig J, Aprea I, Dougherty GW, Raidt J, et al. 2022; Recessive mutations in CFAP74 cause primary ciliary dyskinesia with normal ciliary ultrastructure. Am J Respir Cell Mol Biol. 67:409–13. DOI: 10.1165/rcmb.2022-0032LE. PMID: 36047773. PMCID: PMC9447143.


41. Bustamante-Marin XM, Shapiro A, Sears PR, Charng WL, Conrad DF, Leigh MW, et al. 2020; Identification of genetic variants in CFAP221 as a cause of primary ciliary dyskinesia. J Hum Genet. 65:175–80. DOI: 10.1038/s10038-019-0686-1. PMID: 31636325. PMCID: PMC6920546.


42. Cindrić S, Dougherty GW, Olbrich H, Hjeij R, Loges NT, Amirav I, et al. 2020; SPEF2- and HYDIN-mutant cilia lack the central pair-associated protein SPEF2, aiding primary ciliary dyskinesia diagnostics. Am J Respir Cell Mol Biol. 62:382–96. DOI: 10.1165/rcmb.2019-0086OC. PMID: 31545650.


43. Merveille AC, Davis EE, Becker-Heck A, Legendre M, Amirav I, Bataille G, et al. 2011; CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs. Nat Genet. 43:72–8. DOI: 10.1038/ng.726. PMID: 21131972. PMCID: PMC3509786.


44. Becker-Heck A, Zohn IE, Okabe N, Pollock A, Lenhart KB, Sullivan-Brown J, et al. 2011; The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nat Genet. 43:79–84. DOI: 10.1038/ng.727. PMID: 21131974. PMCID: PMC3132183.


45. Wirschell M, Olbrich H, Werner C, Tritschler D, Bower R, Sale WS, et al. 2013; The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans. Nat Genet. 45:262–8. DOI: 10.1038/ng.2533. PMID: 23354437. PMCID: PMC3818796.


46. Horani A, Brody SL, Ferkol TW, Shoseyov D, Wasserman MG, Ta-shma A, et al. 2013; CCDC65 mutation causes primary ciliary dyskinesia with normal ultrastructure and hyperkinetic cilia. PLoS One. 8:e72299. DOI: 10.1371/journal.pone.0072299. PMID: 23991085. PMCID: PMC3753302. PMID: 7fdb448575d6472db50f26d20a7fe4a0.
47. Olbrich H, Cremers C, Loges NT, Werner C, Nielsen KG, Marthin JK, et al. 2015; Loss-of-function GAS8 mutations cause primary ciliary dyskinesia and disrupt the nexin-dynein regulatory complex. Am J Hum Genet. 97:546–54. DOI: 10.1016/j.ajhg.2015.08.012. PMID: 26387594. PMCID: PMC4596893.
48. Loges NT, Olbrich H, Becker-Heck A, Häffner K, Heer A, Reinhard C, et al. 2009; Deletions and point mutations of LRRC50 cause primary ciliary dyskinesia due to dynein arm defects. Am J Hum Genet. 85:883–9. DOI: 10.1016/j.ajhg.2009.10.018. PMID: 19944400. PMCID: PMC2795801.
49. Duquesnoy P, Escudier E, Vincensini L, Freshour J, Bridoux AM, Coste A, et al. 2009; Loss-of-function mutations in the human ortholog of Chlamydomonas reinhardtii ODA7 disrupt dynein arm assembly and cause primary ciliary dyskinesia. Am J Hum Genet. 85:890–6. DOI: 10.1016/j.ajhg.2009.11.008. PMID: 19944405. PMCID: PMC2790569.
50. Omran H, Kobayashi D, Olbrich H, Tsukahara T, Loges NT, Hagiwara H, et al. 2008; Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature. 456:611–6. DOI: 10.1038/nature07471. PMID: 19052621. PMCID: PMC3279746.


51. Mitchison HM, Schmidts M, Loges NT, Freshour J, Dritsoula A, Hirst RA, et al. 2012; Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia. Nat Genet. 44:381–9. DOI: 10.1038/ng.1106. PMID: 22387996. PMCID: PMC3315610.


52. Panizzi JR, Becker-Heck A, Castleman VH, Al-Mutairi DA, Liu Y, Loges NT, et al. 2012; CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms. Nat Genet. 44:714–9. DOI: 10.1038/ng.2277. PMID: 22581229. PMCID: PMC3371652.


53. Austin-Tse C, Halbritter J, Zariwala MA, Gilberti RM, Gee HY, Hellman N, et al. 2013; Zebrafish ciliopathy screen plus human mutational analysis identifies C21orf59 and CCDC65 defects as causing primary ciliary dyskinesia. Am J Hum Genet. 93:672–86. DOI: 10.1016/j.ajhg.2013.08.015. PMID: 24094744. PMCID: PMC3791264.
54. Tarkar A, Loges NT, Slagle CE, Francis R, Dougherty GW, Tamayo JV, et al. 2013; DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nat Genet. 45:995–1003. DOI: 10.1038/ng.2707. PMID: 23872636. PMCID: PMC4000444.


55. Kott E, Duquesnoy P, Copin B, Legendre M, Dastot-Le Moal F, Montantin G, et al. 2012; Loss-of-function mutations in LRRC6, a gene essential for proper axonemal assembly of inner and outer dynein arms, cause primary ciliary dyskinesia. Am J Hum Genet. 91:958–64. DOI: 10.1016/j.ajhg.2012.10.003. PMID: 23122589. PMCID: PMC3487148.
56. Horani A, Druley TE, Zariwala MA, Patel AC, Levinson BT, Van Arendonk LG, et al. 2012; Whole-exome capture and sequencing identifies HEATR2 mutation as a cause of primary ciliary dyskinesia. Am J Hum Genet. 91:685–93. DOI: 10.1016/j.ajhg.2012.08.022. PMID: 23040496. PMCID: PMC3484505.
57. Knowles MR, Ostrowski LE, Loges NT, Hurd T, Leigh MW, Huang L, et al. 2013; Mutations in SPAG1 cause primary ciliary dyskinesia associated with defective outer and inner dynein arms. Am J Hum Genet. 93:711–20. DOI: 10.1016/j.ajhg.2013.07.025. PMID: 24055112. PMCID: PMC3791252.
58. Moore DJ, Onoufriadis A, Shoemark A, Simpson MA, zur Lage PI, de Castro SC, et al. 2013; Mutations in ZMYND10, a gene essential for proper axonemal assembly of inner and outer dynein arms in humans and flies, cause primary ciliary dyskinesia. Am J Hum Genet. 93:346–56. DOI: 10.1016/j.ajhg.2013.07.009. PMID: 23891471. PMCID: PMC3738835.
59. Fassad MR, Shoemark A, le Borgne P, Koll F, Patel M, Dixon M, et al. 2018; C11orf70 mutations disrupting the intraflagellar transport-dependent assembly of multiple axonemal dyneins cause primary ciliary dyskinesia. Am J Hum Genet. 102:956–72. DOI: 10.1016/j.ajhg.2018.03.024. PMID: 29727692. PMCID: PMC5986720.
60. Höben IM, Hjeij R, Olbrich H, Dougherty GW, Nöthe-Menchen T, Aprea I, et al. 2018; Mutations in C11orf70 cause primary ciliary dyskinesia with randomization of left/right body asymmetry due to defects of outer and inner dynein arms. Am J Hum Genet. 102:973–84. DOI: 10.1016/j.ajhg.2018.03.025. PMID: 29727693. PMCID: PMC5986731.
61. Thomas L, Bouhouche K, Whitfield M, Thouvenin G, Coste A, Louis B, et al. 2020; TTC12 loss-of-function mutations cause primary ciliary dyskinesia and unveil distinct dynein assembly mechanisms in motile cilia versus flagella. Am J Hum Genet. 106:153–69. DOI: 10.1016/j.ajhg.2019.12.010. PMID: 31978331. PMCID: PMC7011118.
62. Bonnefoy S, Watson CM, Kernohan KD, Lemos M, Hutchinson S, Poulter JA, et al. 2018; Biallelic mutations in LRRC56, encoding a protein associated with intraflagellar transport, cause mucociliary clearance and laterality defects. Am J Hum Genet. 103:727–39. DOI: 10.1016/j.ajhg.2018.10.003. PMID: 30388400. PMCID: PMC6218757.
63. Bakey Z, Cabrera OA, Hoefele J, Antony D, Wu K, Stuck MW, et al. 2023; IFT74 variants cause skeletal ciliopathy and motile cilia defects in mice and humans. PLoS Genet. 19:e1010796. DOI: 10.1371/journal.pgen.1010796. PMID: 37315079. PMCID: PMC10298753. PMID: e3c33751139d4a74a9903b2f1e069797.
64. Knowles MR, Leigh MW, Ostrowski LE, Huang L, Carson JL, Hazucha MJ, et al. Genetic Disorders of Mucociliary Clearance Consortium. 2013; Exome sequencing identifies mutations in CCDC114 as a cause of primary ciliary dyskinesia. Am J Hum Genet. 92:99–106. DOI: 10.1016/j.ajhg.2012.11.003. PMID: 23261302. PMCID: PMC3542458.


65. Onoufriadis A, Paff T, Antony D, Shoemark A, Micha D, Kuyt B, et al. 2013; Splice-site mutations in the axonemal outer dynein arm docking complex gene CCDC114 cause primary ciliary dyskinesia. Am J Hum Genet. 92:88–98. DOI: 10.1016/j.ajhg.2012.11.002. PMID: 23261303. PMCID: PMC3542455.


66. Hjeij R, Onoufriadis A, Watson CM, Slagle CE, Klena NT, Dougherty GW, et al. 2014; CCDC151 mutations cause primary ciliary dyskinesia by disruption of the outer dynein arm docking complex formation. Am J Hum Genet. 95:257–74. DOI: 10.1016/j.ajhg.2014.08.005. PMID: 25192045. PMCID: PMC4157146.
67. Hjeij R, Lindstrand A, Francis R, Zariwala MA, Liu X, Li Y, et al. 2013; ARMC4 mutations cause primary ciliary dyskinesia with randomization of left/right body asymmetry. Am J Hum Genet. 93:357–67. DOI: 10.1016/j.ajhg.2013.06.009. PMID: 23849778. PMCID: PMC3738828.
68. Wallmeier J, Shiratori H, Dougherty GW, Edelbusch C, Hjeij R, Loges NT, et al. 2016; TTC25 deficiency results in defects of the outer dynein arm docking machinery and primary ciliary dyskinesia with left-right body asymmetry randomization. Am J Hum Genet. 99:460–9. DOI: 10.1016/j.ajhg.2016.06.014. PMID: 27486780. PMCID: PMC4974089.


69. Hjeij R, Aprea I, Poeta M, Nöthe-Menchen T, Bracht D, Raidt J, et al. 2023; Pathogenic variants in CLXN encoding the outer dynein arm dockingassociated calcium-binding protein calaxin cause primary ciliary dyskinesia. Genet Med. 25:100798. DOI: 10.1016/j.gim.2023.100798. PMID: 36727596.
70. Wallmeier J, Al-Mutairi DA, Chen CT, Loges NT, Pennekamp P, Menchen T, et al. 2014; Mutations in CCNO result in congenital mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat Genet. 46:646–51. DOI: 10.1038/ng.2961. PMID: 24747639.


71. Boon M, Wallmeier J, Ma L, Loges NT, Jaspers M, Olbrich H, et al. 2014; MCIDAS mutations result in a mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat Commun. 5:4418. DOI: 10.1038/ncomms5418. PMID: 25048963.
72. Wallmeier J, Bracht D, Alsaif HS, Dougherty GW, Olbrich H, Cindric S, et al. 2021; Mutations in TP73 cause impaired mucociliary clearance and lissencephaly. Am J Hum Genet. 108:1318–29. DOI: 10.1016/j.ajhg.2021.05.002. PMID: 34077761. PMCID: PMC8322810.
73. Bustamante-Marin XM, Horani A, Stoyanova M, Charng WL, Bottier M, Sears PR, et al. 2020; Mutation of CFAP57, a protein required for the asymmetric targeting of a subset of inner dynein arms in Chlamydomonas, causes primary ciliary dyskinesia. PLoS Genet. 16:e1008691. DOI: 10.1371/journal.pgen.1008691. PMID: 32764743. PMCID: PMC7444499. PMID: ed560ccc4d4b41219172bc6473260ff5.
74. Bustamante-Marin XM, Yin WN, Sears PR, Werner ME, Brotslaw EJ, Mitchell BJ, et al. 2019; Lack of GAS2L2 causes PCD by impairing cilia orientation and mucociliary clearance. Am J Hum Genet. 104:229–45. DOI: 10.1016/j.ajhg.2018.12.009. PMID: 30665704. PMCID: PMC6372263.
75. Al Mutairi F, Alkhalaf R, Alkhorayyef A, Alroqi F, Yusra A, Umair M, et al. 2020; Homozygous truncating NEK10 mutation, associated with primary ciliary dyskinesia: a case report. BMC Pulm Med. 20:141. DOI: 10.1186/s12890-020-1175-1. PMID: 32414360. PMCID: PMC7229615. PMID: 1057138fa2d046ff92b824e1716cc230.
Table 1
Causative genes for primary ciliary dyskinesia