1. WHO. Antimicrobial resistance: global report on surveillance. Geneva; World Health Organization, 2014.
.
2. Ferri M, Ranucci E, Romagnoli P, Giaccone V. Antimicrobial resistance: a global emerging threat to public health systems. Crit Rev Food Sci Nutr 2017;57:2857-76.
.
3. Schefold JC, Hasper D, Volk HD, Reinke P. Sepsis: time has come to focus on the later stages. Med Hypotheses 2008;71:203-8.
.
4. Ibrahim EH, Sherman G, Ward S, Fraser VJ, Kollef MH. The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest 2000;118:146-55.
.
5. Beekmann S, Diekema D, Chapin K, Doern G. Effects of rapid detection of bloodstream infections on length of hospitalization and hospital charges. J Clin Microbiol 2003;41:3119-25.
.
6. Banerjee R and Humphries R. Rapid antimicrobial susceptibility testing methods for blood cultures and their clinical impact. Front Med 2021;8:167.
.
7. Jin WY, Jang SJ, Lee MJ, Park G, Kim MJ, Kook JK, et al. Evaluation of VITEK 2, MicroScan, and Phoenix for identification of clinical isolates and reference strains. Diagn Microbiol Infect Dis 2011;70:442-7.
.
8. Hong JS, Park BY, Jang IH, Kim D, Lee H, Jeong SH. Performance evaluation of newly developed Korean antimicrobial susceptibility testing panels for MicroScan system using clinical isolates from teaching hospitals in Korea. Ann Clin Microbiol 2019;22:61-70.
.
9. Inglis TJ and Ekelund O. Rapid antimicrobial susceptibility tests for sepsis; the road ahead. J Med Microbiol 2019;68:973-7.
.
10. Choi J, Jeong HY, Lee GY, Han S, Han S, Jin B, et al. Direct, rapid antimicrobial susceptibility test from positive blood cultures based on microscopic imaging analysis. Sci Rep 2017;7:1-13.
.
11. Kim JH, Kim TS, Song SH, Choi J, Han S, Kim DY, et al. Direct rapid antibiotic susceptibility test (dRAST) for blood culture and its potential usefulness in clinical practice. J Med Microbiol 2018;67:325-31.
.
12. Kim H, Jeong HY, Han S, Han S, Choi J, Jin B, et al. Clinical evaluation of QMAC-dRAST for direct and rapid antimicrobial susceptibility test with gram-positive cocci from positive blood culture bottles. Ann Clin Microbiol 2018;21:12-9.
.
13. Kim JH, Kim TS, Jung HG, Kang CK, Jun KI, Han S, et al. Prospective evaluation of a rapid antimicrobial susceptibility test (QMAC-dRAST) for selecting optimal targeted antibiotics in positive blood culture. J Antimicrob Chemother 2019;74:2255-60.
.
14. Huh HJ, Song DJ, Shim HJ, Kwon WK, Park MS, Ryu MR, et al. Performance evaluation of the QMAC-dRAST for staphylococci and enterococci isolated from blood culture: a comparative study of performance with the VITEK-2 system. J Antimicrob Chemother 2018;73:1267-71.
.
15. Grohs P, Rondinaud E, Fourar M, Rouis K, Mainardi JL, Podglajen I. Comparative evaluation of the QMAC-dRAST V2.0 system for rapid antibiotic susceptibility testing of Gram-negative blood culture isolates. J Microbiol Methods 2020;172:105902.
.
16. Jacoby GA. AmpC beta-lactamases. Clin Microbiol Rev 2009;22:161-82.
.
17. Cheong HS, Ko KS, Kang CI, Chung DR, Peck KR, Song JH. Prevalence of extendedspectrum β-lactamase among Enterobacteriacae blood isolates with inducible AmpC β-lactamase. Infect Chemother 2010;42:280-4.
.
18. Paterson DL. Resistance in gram-negative bacteria: Enterobacteriaceae. Am J Infect Control 2006;34:S20-8.
.
19. Chow JW, Fine MJ, Shlaes DM, Quinn JP, Hooper DC, Johnson MP, et al. Enterobacter bacteremia: clinical features and emergence of antibiotic resistance during therapy. Ann Intern Med 1991;115:585-90.
.
20. Pfaller MA, Jones RN, Group MS. Antimicrobial susceptibility of inducible AmpC β-lactamase-producing Enterobacteriaceae from the Meropenem Yearly Susceptibility Test Information Collection (MYSTIC) Programme, Europe 1997–2000. Int J Antimicrob Agents 2002;19:383-8.
.
21. Park YJ, Lee S, Yong D, Lee K, Kim BK, Kang CS. Antimicrobial susceptibility of inducible AmpC beta-lactamase-producing Enterobacter cloacae, Citrobacter freundii, and Serratia marcescens: a Korean survey. Korean J Lab Med 2003;23:251-7.
.
22. Clinical and Laboratory Standards Institute (CLSI). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; CLSI M07. Wayne; PA: 2018.
.
23. Food and Drug Administration. Guidance for industry and FDA. Class II special controls guidance document: antimicrobial susceptibility test (AST) systems. Silver Spring; Center for Devices and Radiological Health, Food and Drug Administration, US Department of Health and Human Services, 2009.
.
24. Thomson KS. Extended-spectrum-β-lactamase, AmpC, and carbapenemase issues. J Clin Microbiol 2010;48:1019-25.
.
25. Choi SH, Lee JE, Park SJ, Choi SH, Lee SO, Jeong JY, et al. Emergence of antibiotic resistance during therapy for infections caused by Enterobacteriaceae producing AmpC betalactamase: implications for antibiotic use. Antimicrob Agents Chemother 2008;52:995-1000.
.
26. Cosgrove SE, Kaye KS, Eliopoulous GM, Carmeli Y. Health and economic outcomes of the emergence of third-generation cephalosporin resistance in Enterobacter species. Arch Intern Med 2002;162:185-90.
.
27. Quesada M, Giménez M, Molinos S, Fernández G, Sánchez M, Rivelo R, et al. Performance of VITEK-2 Compact and overnight MicroScan panels for direct identification and susceptibility testing of Gram-negative bacilli from positive FAN BacT/ALERT blood culture bottles. Clin Microbiol Infect 2010;16:137-40.
.