Journal List > J Korean Soc Endocrinol > v.20(6) > 1063833

Lim and Park: Osteoporosis and Atherosclerosis: Current and New Potential Medicines Targeting Both Diseases

References

1. Whitney C, Warburton D, Frohlich J, Chan S, McKay H, Khan K. Are cardiovascular disease and osteoporosis directly linked? Sports Med. 2004; 34:779–807.
crossref
2. Mundy G, Garrett R, Harris S, Chan J, Chen D, Rossini G, Boyce B, Zhao M, Gutierrez G. Stimulation of bone formation in vitro and in rodents by statins. Science. 1999; 286:1946–1949.
crossref
3. Maritz F, Conradie M, Hulley P, Gopal R, Hough S. Effect of statins on bone mineral density and bone histomorphometry in rodents. Arteriosclrer Thromb Vasc Biol. 2001; 21:1636–1641.
crossref
4. Meier C, Schlienger R, Kraenzlin M, Schlegel B, Jick H. HMG-CoA reductase inhibitors and the risk of fractures. JAMA. 2000; 283:3205–3210.
crossref
5. Mundy G. Statins and their potential for osteoporosis. Bone. 2001; 29:495–497.
crossref
6. Watanabe S, Fukumoto S, Takeuchi Y, Fujita H, Nakano T, Fujita T. Effects of 1-year treatment with fluvastatin or pravastatin on bone. Am J Med. 2001. 110:p. 584–587.
crossref
7. LaCroix A, Cauley J, Pettinger M, Hsia J, Bauer D, McGowan J, Chen Z, Lewis C, McNeeley G, Passaro M, Jackson R. Statin Use, Clinical Fracture, and Bone Density in Postmenopausal Women: Results from the Women’s Health Initiative Observational Study. Ann Intern Med. 2003; 139:97–104.
crossref
8. Adami S, Braga V, Guidi G, Gatti D, Gerardi D, Fracassi E. Chronic intravenous aminobisphosphonate therapy increases high-density lipoprotein cholesterol and decreases low-density lipoprotein cholesterol. J Bone Miner Res. 2000; 15:599–604.
crossref
9. Rogers M, Gordon S, Benford H, Coxon F, Luckman S, Monkkonen J, Frith J. Cellular and Molecular Mechanisms of Action of Bisphosphonates. Cancer 15;. 2000; 88:2961–2978.
crossref
10. Ylitalo R. Bisphosphonates and atherosclerosis. Gen Pharm. 2002; 35:287–296.
crossref
11. Kramsch D, Aspen A, Rozler L. Atherosclerosis: prevention by agents not affecting abnormal levels of blood lipids. Science. 1981; 213:1511–1512.
crossref
12. Koshiyama H, Nakamura Y, Tanaka S, Minamikawa J. Decrease in carotid intima-media thickness after 1-year therapy with Etidronate for osteopenia associated with type 2 diabetes. J Clin Endocrinol Metab. 2005; 85:2793–2796.
crossref
13. L Tankó, G Qin, P Alexandersen, Y Bagger, C Christiansen. Effective doses of ibandronate do not influence the 3-year progression of aortic calcification in elderly osteoporotic women. Osteoporos Int. 2005; 16:184–190.
crossref
14. Shimshi M, Abe E, Fisher E, Zaidi M, Fallon J. Bisphosphonates induce inflammation and rupture of atherosclerotic plaques in apolipoprotein-E null mice. Biochem Biophys Res Commun. 2005; 328:790–793.
crossref
15. Barrett-Connor E, Cox D, Anderson P. The potential of SERMs for reducing the risk of coronary heart disease. Trends Endocrinol Metab. 1999; 10:320–325.
crossref
16. Williams J, Wagner J, Li Z, Golden D, Adams M. Tamoxifen inhibits arterial accumulation of LDL degradation products and progression of coronary artery atherosclerosis in monkeys. Arterioscler Thromb Vasc Biol. 1997; 17:403–408.
crossref
17. Ke H, Chen H, Simmons H, Qi H, Crawford D, Pirie C, Chidsey-Frink K, Ma Y, Jee W, Thompson D. Comparative effects of droloxifene, tamoxifen, and estrogen on bone, serum cholesterol, and uterine histology in the ovariectomized rat model. Bone. 1997; 20:31–39.
crossref
18. Figtree G, Lu Y, Webb C, Collins P. Raloxifene Acutely Relaxes Rabbit Coronary Arteries In Vitro by an Estrogen Receptor–Dependent and Nitric Oxide–Dependent Mechanism. Circulation. 1999; 100:1095–1101.
crossref
19. Zuckerman S, Bryan N. Inhibition of LDL oxidation and myeloperoxidase dependent tyrosyl radical formation by the selective estrogen receptor modulator raloxifene. Atherosclerosis. 1996; 126:65–75.
20. Walsh B, Kuller L, Wild R, Paul S, Farmer M, Lawrence J, Shah A, Anderson P. Effects of Raloxifene on Serum Lipids and Coagulation Factors in Healthy Postmenopausal Women. JAMA. 1998; 279:1445–1451.
crossref
21. Stamatelopoulos K, Lekakis J, Poulakaki N, Papamichael C, Venetsanou K, Aznaouridis K, Protogerou A, Papaioannou T, Kumar S, Stamatelopoulos S. Tamoxifen improves endothelial function and reduces carotid intima-media thickness in postmenopausal women. Am Heart J. 2004; 147:1093–1099.
crossref
22. Early Breast Cancer Trialists’ Collaborative Group . Tamoxifen for early breast cancer: an overview of the randomised trials. Lancet. 1998; 351:1451–1467.
23. Mosca L, Barrett-Connor E, Wegner N, Collins P, Grady D, Kornitzer M, Moscarelli E, Paul S, Wright T, Helterbrand J, Anderson P. Design and methods of the Raloxifene Use for the Heart (RUTH) study. Am J Cardiol. 2001; 88:392–395.
crossref
24. Hamerman D. Osteoporosis and atherosclerosis: biological linkages and the emergence of dual-purpose therapies. Q J Med. 2005; 98:467–484.
crossref
25. Kontogianni M, Dafni U, Routsias J, Skopouli F. Blood leptin and adiponectin as possible mediators of the relation between fat mass and BMD in perimenopausal women. J Bone Miner Res. 2004; 19:546–551.
crossref
26. Akune T, Ohba S, Kamekura S, Yamaguchi M, Chung U, Kubota N, Terauchi Y, Harada Y, Azuma Y, Nakamura K, Kadowaki T, Kawaguchi H. PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest. 2004; 113:846–855.
27. Ali A, Weinstein R, Stewart S, Parfitt A, Manolagas S, Jilka R. Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology. 2005; 146:1226–1235.
crossref
28. Whitfield J. Osteogenic PTHs and vascular ossification-Is there a danger for osteoporotics? J Cell Biochem. 2005; 95:437–444.
crossref
29. Martin-Ventura JL, Ortego M, Esbrit P, Hernandez-Presa MA, Ortega L, Egido J. Possible role of parathyroid hormone-related protein as a proinflmammatory cytokine in atherosclerosis. Stroke. 2003; 34:1783–1789.
30. Shao J, Cheng S, Charlton-Kachigian N, Loewy A, Towler D. Teriparatide (Human Parathyroid Hormone (1-34)) inhibits osteogenic vascular calcification in diabetic low density lipoprotein receptor-deficient mice. J Biol Chem. 2003; 278:50195–50202.
crossref
31. Sattler A, Schoppet M, Schaefer J, Hofbauer L. Novel aspects on RANKL ligand and osteoprotegerin in osteoporosis and vascular disease. Calcif Tissue Int. 2004; 74:103–106.
32. Price P, June H, Buckley J, Williamson M. Osteoprotegerin inhibits artery calcification induced by warfarin and by vitamin D. Arterioscler Thromb Vasc Biol. 2001; 21:1610–1616.
crossref
33. Browner W, Lui L, Cummings S. Associations of serum osteoprotegerin levels with diabetes, stroke, bone density, fractures, and mortality in elderly women. J Clin Endocrinol Metab. 2001; 86:631–637.
crossref
34. Schoppet M, Schaefer J, Hofbauer L. Low serum levels of soluble RANK ligand are associated with the presence of coronary artery disease in men. Circulation. 2003; :76.
crossref
35. Schoppet M, Preissner K, Hofbauer L. RANK ligand and osteoprotegerin paracrine regulators of bone metabolism and vascular function. Arterioscler Thromb Vasc Biol. 2002; 22:549–553.
36. Bekker P, Holloway D, Nakanishi A, Arrighi M, Leese P, Dunstan C. The effect of a single dose of osteoprotegerin in postmenopausal women. J Bone MinerRes. 2001; 16:348–360.
crossref
37. Klein R, Allard J, Avnur Z, Nikolcheva T, Rotstein D, Carlos A, Shea M, Waters R, Belknap J, Peltz G, Orwoll E. Regulation of bone mass in mice by the lipoxygenase gene Alox15. Science. 2004; 303:229–232.
38. Cornicelli J, Trivedi B. 15-Lipoxygenase and its inhibition: a novel therapeutic target for vascular disease. Curr Pharm Des. 1999; 5:11–20.
39. Magoori K, Kang M, Ito M, Kakuuchi H, Ioka R, Kamataki A, Kim D, Asaba H, Iwasaki S, Takei Y, Sasaki M, Usui S, Okazaki M, Takahashi S, Ono M, Nose M, Sakai J, Fujino T, Yamamoto T. Severe hypercholesterolemia, impaired fat tolerance, and advanced atherosclerosis in mice lacking both low density lipoprotein receptor-related protein 5 and apolipoprotein E. J Biol Chem. 2003; 278:11331–11336.
crossref

Fig. 1.
Mevalonic acid pathway and action sites of statins and bisphosphonates.
jkse-20-608f1.tif
Fig. 2.
The involvements of PTH, PTHrP, and their shared PTHR1 receptor in vascular ossification.
jkse-20-608f2.tif
TOOLS
Similar articles