Journal List > J Bacteriol Virol > v.46(4) > 1034230

Dinkov: Microorganisms in Vacuum Stored Flower Bee Pollen

Abstract

Contamination with sanitary microorganisms from Enterobacteriaceae, Pseudomonadaceae, Staphylococcaceae, Micrococcaceae and Bacillaceae families in flower bee pollen from Bulgaria after one-year vacuum-packed cold storage has been found. Dried flower bee pollens intended for human consumption were with high incidence rate of contamination with Pantoea sp. (P. agglomerans and P. agglomerans bgp6) (100%), Citrobacter freundii (47%), Proteus mirabilis (31.6%), Serratia odorifera (15.8%) and Proteus vulgaris (5.3%). Bee pollens were also positive for the culture of microorganisms from Staphylococcaceae, Micrococcaceae and Bacillaceae families: Staphylococcus hominis subsp hominis, Staphylococcus epidermidis, Arthrobacter globiformis, Bacillus pumilis, Bacillus subtilis and Bacillus amyloliquefaciens. It was concluded that, if consumed directly, the vacuum-packed cold stored dried bee pollen, harvested according hygienic requirements from bee hives in industrial pollution-free areas without intensive crop production, is not problem for healthy human.

REFERENCES

1). Dinkov D, Stratev D. The content of two toxic heavy metals in Bulgarian bee pollen. Int Food Res J. 2016; 23:1343–5.
2). Bogdanov S. Pollen: Production, Nutrition and Health: A Review. 2014. http://www.bee-hexagon.net/files/file/fileE/Health/PollenBook2Review.pdf.
3). Campos MG, Bogdanov S, Almeida-Muradian LB, Szczesna T, Mancebo Y, Frigerio C, et al. Pollen composition and standardization of analytical methods. J Apic Res Bee World. 2008; 47:156–63.
4). Shevtsova T, Kačániová M, Garkava K, Brindza J, Petrova J. Contamination of Betula verrucosa ehrh pollen by microorganisms, mycotoxins and heavy metals. J Microbiol Biotech Food Sci. 2014; 3:509–13.
5). Hani B, Dalila B, Saliha D, Daoud H, Mouloud G, Seddik K. Microbiological Sanitary Aspects of Pollen. Adv Environ Biol. 2012; 6:1415–20.
6). Bogdanov S. Contaminants of bee products. Apidologie. 2006; 37:1–18.
crossref
7). Domínguez-Valhondo D, Gil DB, Hernández MT, González-Gómez D. Influence of the commercial processing and floral origin on bioactive and nutritional properties of honeybee-collected pollen. Int J Food Sci Tech. 2011; 46:2204–11.
crossref
8). Dinkov D. Differentiation and antibiotic susceptibility of Pantoea agglomerans isolated from flower bee pollen. Eastern Academic J. 2016; 5:99–108.
9). Koch FE. Electivnahrboden fur Staphylokokken. Zentralbl Bakt I Abt Orig. 1942; 149:122–4.
10). Sawhney D. The toxicity of potassium tellurite to Staphylococcus aureus in rabbit plasma fibrinogen agar. J Appl Bacteriol. 1986; 61:149–55.
11). Antimicrobial resistance: Global Report on Surveil lance. W. H. Organization;2014. http://apps.who.int/iris/bitstream/10665/112642/1/9789241564748_eng.pdf.
12). Mathlouthi M. Water content, water activity, water structure and the stability of foodstuffs. Food Control. 2001; 12:409–17.
crossref
13). Gilliam M. Microbiology of pollen and bee bread. Apidoligie. 1979; 10:269–74.
14). Serra BJ, Escola JR. Nutrient Composition and Microbiological Quality of Honeybee-Collected Pollen in Spain. J Agr Food Chem. 1997; 45:725–32.
15). Tortorello M. Indicator Orgnanisms for Safety and Quality Uses and Methods for Detection: Minireview. J AOAC Int. 2003; 86:1208–17.
16). Sanders WE Jr, Sanders CC. Enterobacter spp.: patho gens poised to flourish at the turn of the century. Clin Microbiol Rev. 1997; 10:220–41.
17). Card SD, Pearson MN, Clover GRG. Plant pathogens transmitted by pollen. Australas Plant Path. 2007; 36:455–61.
crossref
18). Flores JM, Gutierrez I, Espejo R. The role of pollen in chalkbrood disease in Apis mellifera: transmission and predisposing conditions. Mycologia. 2005; 97:1171–6.
19). Lacey ME, West JS. The Air Spora: A manual for catching and identifying airborne biological particles. Springer;2007. 15-34.
20). Nunes C, Usall J, Teixido N, Vinas I. Biological control of postharvest pear diseases using a bacterium, Pantoea agglomerans CPA-2. Int J Food Microbiol. 2001; 70:53–61.
21). Loncaric I, Heigl H, Licek E, Moosbeckhofer R, Busse HJ, Rosengarten R. Typing of Pantoea agglomerans isolated from colonies of honey bees (Apis mellifera) and culturability of selected strains from honey. Apidologie. 2009; 40:40–54.
22). Mudryk M. Plant-isolated Pantoea agglomerans–new look into potential pathogenicity. Mikrobiol Z. 2012; 74:53–7.
23). Kratz A, Greenberg D, Barki Y, Cohen E, Lifshitz M. Pantoea agglomerans as a cause of septic arthritis after palm tree thorn injury; case report and literature review. Arch Dis Child. 2003; 88:542–4.
24). Bergman KA, Arends JP, Scholvinck EH. Pantoea agglomerans septicemia in three newborn infants. Pediatr Infect Dis J. 2007; 26:453–4.
25). Joaquin A, Khan S, Russel N, al Fayez N. Neonatal meningitis and bilateral cerebellar abscesses due to Citrobacter freundii. Pediatr Neurosurg. 1991; 17:23–4.
26). Berg G, Eberl L, Hartmann A. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol. 2005; 7:1673–85.
crossref
27). Muller HE. Occurrence and pathogenic role of Morganella-Proteus-Providencia group bacteria in human feces. J Clin Microbiol. 1986; 23:404–5.
28). Kodama H. Reevaluation of the histological classification of breast cancer–a presentation of a new histological classification considering the relationship between scirrhous tendency and postoperative prognosis. Nihon Geka Gakkai Zasshi. 1985; 86:853–62.
29). Freney J, Hansen W, Etienne J, Vandenesch F, Fleurette J. Postoperative infant septicemia caused by Pseudomonas luteola (CDC group Ve-1) and Pseudomonas oryzihabitans (CDC group Ve-2). J Clin Microbiol. 1988; 26:1241–3.
30). Bendig JW, Mayes PJ, Eyers DE, Holmes B, Chin TT. Flavimonas oryzihabitans (Pseudomonas oryzihabitans; CDC group Ve-2): an emerging pathogen in peritonitis related to continuous ambulatory peritoneal dialysis? J Clin Microbiol. 1989; 27:217–8.
31). Palazzo IC, d'Azevedo PA, Secchi C, Pignatari AC, Darini AL. Staphylococcus hominis subsp. Novobiosepticus strains causing nosocomial bloodstream infection in Brazil. J Antimicrob Chemother. 2008. 62:1222–6.
crossref
32). Gilliam M, Lorenz BJ. Gram-positive cocci from apiarian sources. J Invertebr Pathol. 1983; 42:187–95.
crossref
33). Levinson W. Review of Medical Microbiology and Immunology. 11th ed.McGraw-Hill Education;2010. p. 94–9.
34). Gilliam M, Roubik DW, Lorenz BJ. Microorganisms associated with pollen, honey, and brood provisions in the nest of a stingless bee, Melipona fasciata. Apidologie. 1990; 21:89–97.
crossref
35). Ray B, Bhunia A. Opportunistic Bacterial Pathogens, Molds and Mycotoxins, Viruses, Parasites and Fish and Shellfish Toxins In Fundamental Food Microbiology. Fifth Edition. CRC Press Taylor & Francis Group;2014. p. 390.
36). Commission Regulation (EC) No 1441/2007 of 5 December 2007 amending Regulation (EC) No 2073/2005 on microbiological criteria for foodstuffs. Official Journal of the European Union. 2007; L322:12–29.
37). Idris EE, Bochow H, Ross H, Borriss R. Nutzung von Bacillus subtilis als Mittel für den biologischen Pflanzenschutz. VI. Phytohormonartige Wirkung von Kulturfiltraten von pflanzenwachstumsfördernden Bacillus amyloliquefaciens FZB24, FZB42, FZB45 und Bacillus subtilis FZB37. Z Pflanzenk Pflanzen. 2004; 111:583–97.
38). Borriss R, Chen XH, Rueckert C, Blom J, Becker A, Baumgarth B, et al. Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7T and FZB42T: a proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparisons. Int J Syst Evol Microbiol. 2011; 61:1786–801.
39). Muhamad LJ, Ito H, Watanabe H, Tamura N. Distribution of Microorganisms in Spices and Their Decontamination by Gamma-irradiation. Agric Bioi Chem. 1986; 50:347–55.
40). Rogers RF. Bacillus isolates from refrigerated doughs, wheat flour, and wheat. Cereal Chem. 1978; 55:671–4.
41). (EFSA) EFSA. Opinion of the Scientific Panel on biological hazards (BIOHAZ) on Bacillus cereus and other Bacillus spp in foodstuffs. EFSA J. 2005; 3:175.
42). Korner P, Schmid-Hempel P. In vivo dynamics of an immune response in the bumble bee Bombus terrestris. J Invertebr Pathol. 2004; 87:59–66.
43). Sadd BM, Schmid-Hempel P. Principles of ecological immunology. Evol Appl. 2009; 2:113–21.

Table 1.
Water activity (a w) and total count of microorganisms from the family Enterobacteriaceae on flower bee pollen from different regions of Bulgaria (n=32)
Regions Dried bee pollen Regions Fresh bee pollen
Water activity (a w/℃) Enterobacteriaceae (CFU/g) Water activity (a w/℃) Enterobacteriaceae (CFU/g)
Lovetch (n=1) 0.388/23.8℃ 7.5 × 102 Vratsa (n=2) 0.715/20.8℃ 1.32 × 104
Strandzha (n=4) 0.450/21.9℃ 8.5 × 103 Strandzha (n=4) 0.718/22.2℃ 5 × 104
Shoumen (n=6) 0.183/20.2℃ 3.6 × 103 Shoumen (n=6) 0.725/20.6℃ 1.4 × 104
Sliven (n=1) 0.309/23.2℃ 1.5 × 103 Sliven (n=1) 0.722/23.4℃ 3.7 × 104
V. Tarnovo (n=3) 0.298/22.3℃ 1.4 ×103   -  
St. Zagora (n=2) 0.234/22.9℃ Not detected   -  
Karlovo (n=2) 0.403/25℃ Not detected   -  

Not detected: no microorganisms from the family Enterobacteriaceae were present following direct inoculation of 100  l оf the initial dilution on VRBD agar

Table 2.
Incidence rate of contamination with microorganisms from Enterobacteriaceae and Pseudomonadaceae families on flower bee pollen from different regions of Bulgaria (n=32)
Isolated species Dried bee pollen (n = 19) Fresh bee pollen (n = 13)
No. of samples contaminated Incidence rate (%) No. of samples contaminated Incidence rate (%)
    Pantoea species    
Pantoea agglomerans 13 (All regions except reg. Shoumen) 68.4 3 (Vratsa and Sliven) 23.0
Pantoea agglomerans bgp 6 6 (Shoumen) 31.6 10 (Shoumen and Strandzha) 76.9
    Citrobacter species    
Citrobacter freundii 9 (Lovetch, Shoumen, St. Zagora) 47.3 - -
    Proteus species    
Protе us vulgaris 1 (Sliven) 5.3 10 (Shoumen and Strandzha) 76.9
Proteus mirabilis 6 (Shoumen) 31.6 6 (Shoumen) 46.1
    Serratia species    
Serratia odorifera 3 (V. Tarnovo) 15.8 - -
Serratia liquefaciens/ grimesii - - 4 (Strandzha) 30.7
    Escherichia species    
Escherichia coli - - 8 (Vratsa and Shoumen) 61.5
    Pseudomonas species    
Flavimonas oryzihabitans - - 2 (Vratsa) 15.3

The incidence rate was calculated as % rate of number of positive samples over the total number of samples.

Table 3.
Incidence rate of contamination with microorganisms from Staphylococcaceae family on flower bee pollen from different regions of Bulgaria (n=32)
Dried bee pollen (n=19) Fresh bee pollen (n=13)
Regions/ Isolated species No. of samples contaminated Incidence rate (%) Regions/ Isolated species No. of samples contaminated Incidence rate (%)
Shoumen / S. hominis subsp hominis 6 31.5 Shoumen / S. epidermidis 6 46.1
Strandzha / S. epidermidis 4 21.0 Strandzha / S. epidermidis 4 30.7
Sliven / S. hominis subsp hominis 1 5.2 Sliven / S. hominis subsp hominis 1 7.6
Stara Zagora / S. hominis subsp hominis 2 10.5 Vratsa / S. epidermidis 2 15.3
Karlovo / S. hominis subsp hominis 2 10.5 - - -
V.Tarnovo / S. Hominis subsp hominis 3 15.7 - - -
Lovech / S. hominis subsp hominis 1 5.2 - - -
Total S. hominis subsp hominis 15 78.9 Total S. hominis subsp hominis 1 7.6
Total S. epidermidis 4 21.0 Total S. epidermidis 12 92.3
Table 4.
Incidence rate of contamination with microorganisms from Bacillaceae and Micrococcaceae families on flower bee pollen from different regions of Bulgaria (n=32)
Dried bee pollen (n=19) Fresh bee pollen (n=13)
Regions/ Isolated species No. of samples contaminated Incidence rate (%) Regions/ Isolated species No. of samples contaminated Incidence rate (%)
Shoumen / B. pumilis; Arthrobacter globiformis 6 31.5 Shoumen / B. pumilis B. subtilis, Arthrobacter globiformis 6 46.1
Strandzha / B. pumilis 4 21.0 Strandzha / B. pumilis 4 30.7
Sliven / B. pumilis 1 5.2 Sliven / B. pumilis 1 7.6
Stara Zagora / B. pumilis B. amyloliquefaciens 2 10.5 Vratsa / Arthrobacter globiformis B. subtilis 2 15.3
Karlovo / B. pumilis B. amyloliquefaciens 2 10.5 - - -
V. tarnovo / B. pumilis 3 15.7 - - -
Lovech / B. pumilis B. amyloliquefaciens 1 5.2 - - -
Total
B. pumilis 19 100 B. pumilis 11 84.6
B. amyloliquefaciens 3 15.7 B. subtilis 8 61.5
Arthrobacter lobiformis 6 31.5 Arthrobacter globiformis 8 61.5
TOOLS
Similar articles