Journal List > J Bacteriol Virol > v.45(1) > 1034161

Lim and Yoon: Roles of Outer Membrane Vesicles (OMVs) in Bacterial Virulence

Abstract

Outer membrane vesicles (OMVs) are ubiquitous membranous structures in all Gram-negative bacteria, including pathogens and non-pathogens. Gram-positive bacteria also release membrane-derived vesicles (MV). Originating from the cell envelope, OMVs are enriched with bacterial antigen molecules that conduct multiple functions as decoys to manipulate the host immune system. Besides, OMVs and their components play diverse roles in nutrient acquisition, biofilm formation, and resistance to antibiotics. Despite the diverse benefits ascribed to OMVs, many questions remain unanswered with regard to OMV biogenesis and cargo selectivity. In this report, we review the advantages of vesiculation in the context of all bacteria and then focus on additional benefits acquired by OMVs in pathogenic bacteria.

REFERENCES

1). Mayrand D, Grenier D. Biological activities of outer membrane vesicles. Can J Microbiol. 1989; 35:607–13.
crossref
2). Henry T, Pommier S, Journet L, Bernadac A, Gorvel JP, Lloubès R. Improved methods for producing outer membrane vesicles in Gram-negative bacteria. Res Microbiol. 2004; 155:437–46.
crossref
3). Knox KW, Vesk M, Work E. Relation between excreted lipopolysaccharide complexes and surface structures of a lysine-limited culture of Escherichia coli. J Bacteriol. 1966; 92:1206–17.
4). Ellis TN, Kuehn MJ. Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev. 2010; 74:81–94.
crossref
5). Schwechheimer C, Sullivan CJ, Kuehn MJ. Envelope control of outer membrane vesicle production in Gramnegative bacteria. Biochemistry. 2013; 52:3031–40.
crossref
6). Beveridge TJ, Makin SA, Kadurugamuwa JL, Li Z. Interactions between biofilms and the environment. FEMS Microbiol Rev. 1997; 20:291–303.
crossref
7). Kulp A, Kuehn MJ. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol. 2010; 64:163–84.
crossref
8). Chen DJ, Osterrieder N, Metzger SM, Buckles E, Doody AM, DeLisa MP, et al. Delivery of foreign antigens by engineered outer membrane vesicle vaccines. Proc Natl Acad Sci U S A. 2010; 107:3099–104.
crossref
9). Kim JY, Doody AM, Chen DJ, Cremona GH, Shuler ML, Putnam D, et al. Engineered bacterial outer membrane vesicles with enhanced functionality. J Mol Biol. 2008; 380:51–66.
crossref
10). O'Dwyer CA, Reddin K, Martin D, Taylor SC, Gorringe AR, Hudson MJ, et al. Expression of heterologous antigens in commensal Neisseria spp.: preservation of conformational epitopes with vaccine potential. Infect Immun. 2004; 72:6511–8.
11). Kuehn MJ, Kesty NC. Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev. 2005; 19:2645–55.
crossref
12). Mashburn-Warren L, McLean RJ, Whiteley M. Gramnegative outer membrane vesicles: beyond the cell surface. Geobiology. 2008; 6:214–9.
crossref
13). Li Z, Clarke AJ, Beveridge TJ. A major autolysin of Pseudomonas aeruginosa: subcellular distribution, potential role in cell growth and division and secretion in surface membrane vesicles. J Bacteriol. 1996; 178:2479–88.
14). Li Z, Clarke AJ, Beveridge TJ. Gram-negative bacteria produce membrane vesicles which are capable of killing other bacteria. J Bacteriol. 1998; 180:5478–83.
crossref
15). Forsberg CW, Beveridge TJ, Hellstrom A. Cellulase and xylanase release from Bacteroides succinogenes and its importance in the rumen environment. Appl Environ Microbiol. 1981; 42:886–96.
16). Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev. 2003; 67:593–656.
crossref
17). Makin SA, Beveridge TJ. The influence of A-band and B-band lipopolysaccharide on the surface characteristics and adhesion of Pseudomonas aeruginosa to surfaces. Microbiology. 1996; 142:299–307.
18). Murphy K, Park AJ, Hao Y, Brewer D, Lam JS, Khursigara CM. Influence of O polysaccharides on biofilm development and outer membrane vesicle biogenesis in Pseudomonas aeruginosa PAO1. J Bacteriol. 2014; 196:1306–17.
19). Olczak T, Wójtowicz H, Ciuraszkiewicz J, Olczak M. Species specificity, surface exposure, protein expression, immunogenicity, and participation in biofilm formation of Porphyromonas gingivalis HmuY. BMC Microbiol. 2010; 10:134.
20). Mashburn LM, Whiteley M. Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature. 2005; 437:422–5.
crossref
21). Kahnt J, Aguiluz K, Koch J, Treuner-Lange A, Konovalova A, Huntley S, et al. Profiling the outer membrane proteome during growth and development of the social bacterium Myxococcus xanthus by selective biotinylation and analyses of outer membrane vesicles. J Proteome Res. 2010; 9:5197–208.
22). Elmi A, Watson E, Sandu P, Gundogdu O, Mills DC, Inglis NF, et al. Campylobacter jejuni outer membrane vesicles play an important role in bacterial interactions with human intestinal epithelial cells. Infect Immun. 2012; 80:4089–98.
23). Bai J, Kim SI, Ryu S, Yoon H. Identification and characterization of outer membrane vesicle-associated proteins in Salmonella enterica serovar Typhimurium. Infect Immun. 2014; 82:4001–10.
24). Wensink J, Witholt B. Outer-membrane vesicles released by normally growing Escherichia coli contain very little lipoprotein. Eur J Biochem. 1981; 116:331–5.
25). Cascales E, Bernadac A, Gavioli M, Lazzaroni JC, Lloubes R. Pal lipoprotein of Escherichia coli plays a major role in outer membrane integrity. J Bacteriol. 2002; 184:754–9.
26). Hoekstra D, van der Laan JW, de Leij L, Witholt B. Release of outer membrane fragments from normally growing Escherichia coli. Biochim Biophys Acta. 1976; 455:889–99.
27). Kadurugamuwa JL, Beveridge TJ. Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol. 1995; 177:3998–4008.
28). Nguyen TT, Saxena A, Beveridge TJ. Effect of surface lipopolysaccharide on the nature of membrane vesicles liberated from the Gram-negative bacterium Pseudomonas aeruginosa. J Electron Microsc. 2003; 52:465–9.
29). Kadurugamuwa JL, Beveridge TJ. Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics. J Bacteriol. 1996; 178:2767–74.
30). Cascales E, Lloubès R. Deletion analyses of the peptidoglycan-associated lipoprotein Pal reveals three independent binding sequences including a TolA box. Mol Microbiol. 2004; 51:873–85.
crossref
31). Yeh YC, Comolli LR, Downing KH, Shapiro L, McAdams HH. The caulobacter Tol-Pal complex is essential for outer membrane integrity and the positioning of a polar localization factor. J Bacteriol. 2010; 192:4847–58.
32). Song T, Mika F, Lindmark B, Liu Z, Schild S, Bishop A, et al. A new Vibrio cholerae sRNA modulates colonization and affects release of outer membrane vesicles. Mol Microbiol. 2008; 70:100–11.
33). Kesty NC, Mason KM, Reedy M, Miller SE, Kuehn MJ. Enterotoxigenic Escherichia coli vesicles target toxin delivery into mammalian cells. EMBO J. 2004; 23:4538–49.
34). Sharpe SW, Kuehn MJ, Mason KM. Elicitation of epithelial cell-derived immune effectors by outer membrane vesicles of nontypeable Haemophilus influenzae. Infect Immun. 2011; 79:4361–9.
35). Jin JS, Kwon SO, Moon DC, Gurung M, Lee JH, Kim SI, et al. Acinetobacter baumannii secretes cytotoxic outer membrane protein A via outer membrane vesicles. PloS One. 2011; 6:e17027.
36). Bomberger JM, Maceachran DP, Coutermarsh BA, Ye S, O'Toole GA, Stanton BA. Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog. 2009; 5:e1000382.
37). Manning AJ, Kuehn MJ. Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol. 2011; 11:258.
crossref
38). Anwari K, Poggio S, Perry A, Gatsos X, Ramarathinam SH, Williamson NA, et al. A modular BAM complex in the outer membrane of the alpha-proteobacterium Caulobacter crescentus. PloS One. 2010; 5:e8619.
39). Tan TT, Morgelin M, Forsgren A, Riesbeck K. Haemophilus influenzae survival during complement-mediated attacks is promoted by Moraxella catarrhalis outer membrane vesicles. J Infect Dis. 2007; 195:1661–70.
40). Irazoqui JE, Troemel ER, Feinbaum RL, Luhachack LG, Cezairliyan BO, Ausubel FM. Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus. PLoS Pathog. 2010; 6:e1000982.
41). McGhie EJ, Brawn LC, Hume PJ, Humphreys D, Koronakis V. Salmonella takes control: effector-driven manipulation of the host. Curr Opin Microbiol. 2009; 12:117–24.
crossref
42). Worley MJ, Nieman GS, Geddes K, Heffron F. Salmonella typhimurium disseminates within its host by manipulating the motility of infected cells. Proc Natl Acad Sci U S A. 2006; 103:17915–20.
43). Zhou D, Mooseker MS, Galán JE. Role of the S. typhimurium actin-binding protein SipA in bacterial internalization. Science. 1999; 283:2092–5.
44). Kitagawa R, Takaya A, Ohya M, Mizunoe Y, Takade A, Yoshida S, et al. Biogenesis of Salmonella enterica serovar typhimurium membrane vesicles provoked by induction of PagC. J Bacteriol. 2010; 192:5645–56.
45). Yoon H, Ansong C, Adkins JN, Heffron F. Discovery of Salmonella virulence factors translocated via outer membrane vesicles to murine macrophages. Infect Immun. 2011; 79:2182–92.
46). Fernandez-Moreira E, Helbig JH, Swanson MS. Membrane vesicles shed by Legionella pneumophila inhibit fusion of phagosomes with lysosomes. Infect Immun. 2006; 74:3285–95.
47). Galka F, Wai SN, Kusch H, Engelmann S, Hecker M, Schmeck B, et al. Proteomic characterization of the whole secretome of Legionella pneumophila and functional analysis of outer membrane vesicles. Infect Immun. 2008; 76:1825–36.
48). Wai SN, Lindmark B, Söderblom T, Takade A, Westermark M, Oscarsson J, et al. Vesicle-mediated export and assembly of pore-forming oligomers of the enterobacterial ClyA cytotoxin. Cell. 2003; 115:25–35.
crossref
49). Tauschek M, Gorrell RJ, Strugnell RA, Robins-Browne RM. Identification of a protein secretory pathway for the secretion of heat-labile enterotoxin by an enterotoxigenic strain of Escherichia coli. Proc Natl Acad Sci U S A. 2002; 99:7066–71.
50). Horstman AL, Kuehn MJ. Bacterial surface association of heat-labile enterotoxin through lipopolysaccharide after secretion via the general secretory pathway. J Biol Chem. 2002; 277:32538–45.
crossref
51). Horstman AL, Kuehn MJ. Enterotoxigenic Escherichia coli secretes active heat-labile enterotoxin via outer membrane vesicles. J Biol Chem. 2000; 275:12489–96.
52). Meyer DH, Fives-Taylor PM. Characteristics of adherence of Actinobacillus actinomycetemcomitans to epithelial cells. Infect Immun. 1994; 62:928–35.
53). Rolhion N, Barnich N, Claret L, Darfeuille-Michaud A. Strong decrease in invasive ability and outer membrane vesicle release in Crohn's disease-associated adherent-invasive Escherichia coli strain LF82 with the yfgL gene deleted. J Bacteriol. 2005; 187:2286–96.
54). Alaniz RC, Deatherage BL, Lara JC, Cookson BT. Membrane vesicles are immunogenic facsimiles of Salmonella typhimurium that potently activate dendritic cells, prime B and T cell responses, and stimulate protective immunity in vivo. J Immunol. 2007; 179:7692–701.
55). Ernst RK, Guina T, Miller SI. Salmonella typhimurium outer membrane remodeling: role in resistance to host innate immunity. Microbes Infect. 2001; 3:1327–34.
56). Lapinet JA, Scapini P, Calzetti F, Pérez O, Cassatella MA. Gene expression and production of tumor necrosis factor alpha, interleukin-1beta (IL-1beta), IL-8, macrophage inflammatory protein 1alpha (MIP-1alpha), MIP-1beta, and gamma interferon-inducible protein 10 by human neutrophils stimulated with group B meningococcal outer membrane vesicles. Infect Immun. 2000; 68:6917–23.
57). Haurat MF, Aduse-Opoku J, Rangarajan M, Dorobantu L, Gray MR, Curtis MA, et al. Selective sorting of cargo proteins into bacterial membrane vesicles. J Biol Chem. 2011; 286:1269–76.
crossref
58). Duncan L, Yoshioka M, Chandad F, Grenier D. Loss of lipopolysaccharide receptor CD14 from the surface of human macrophage-like cells mediated by Porphyromonas gingivalis outer membrane vesicles. Microb Pathog. 2004; 36:319–25.
59). Kamp EM, Popma JK, Anakotta J, Smits MA. Identification of hemolytic and cytotoxic proteins of Actinobacillus pleuropneumoniae by use of monoclonal antibodies. Infect Immun. 1991; 59:3079–85.
60). McMahon KJ, Castelli ME, García Vescovi E, Feldman MF. Biogenesis of outer membrane vesicles in Serratia marcescens is thermoregulated and can be induced by activation of the Rcs phosphorelay system. J Bacteriol. 2012; 194:3241–9.
61). Olofsson A, Vallström A, Petzold K, Tegtmeyer N, Schleucher J, Carlsson S, et al. Biochemical and functional characterization of Helicobacter pylori vesicles. Mol Microbiol. 2010; 77:1539–55.
62). Chatterjee D, Chaudhuri K. Association of cholera toxin with Vibrio cholerae outer membrane vesicles which are internalized by human intestinal epithelial cells. FEBS Lett. 2011; 585:1357–62.
63). MacEachran DP, Ye S, Bomberger JM, Hogan DA, Swiatecka-Urban A, Stanton BA, et al. The Pseudomonas aeruginosa secreted protein PA2934 decreases apical membrane expression of the cystic fibrosis transmembrane conductance regulator. Infect Immun. 2007; 75:3902–12.
64). Ueno Y, Ohara M, Kawamoto T, Fujiwara T, Komatsuzawa H, Oswald E, et al. Biogenesis of the Actinobacillus actinomycetemcomitans cytolethal distending toxin holotoxin. Infect Immun. 2006; 74:3480–7.
65). Lindmark B, Rompikuntal PK, Vaitkevicius K, Song T, Mizunoe Y, Uhlin BE, et al. Outer membrane vesicle-mediated release of cytolethal distending toxin (CDT) from Campylobacter jejuni. BMC Microbiol. 2009; 9:220.
crossref
66). Kouokam JC, Wai SN, Fällman M, Dobrindt U, Hacker J, Uhlin BE. Active cytotoxic necrotizing factor 1 associated with outer membrane vesicles from uropathogenic Escherichia coli. Infect Immun. 2006; 74:2022–30.
67). Imamura T, Travis J, Potempa J. The biphasic virulence activities of gingipains: activation and inactivation of host proteins. Curr Protein Pept Sci. 2003; 4:443–50.
crossref
68). Beddoe T, Paton AW, Le Nours J, Rossjohn J, Paton JC. Structure, biological functions and applications of the AB5 toxins. Trends Biochem Sci. 2010; 35:411–8.
crossref
69). Toledo A, Coleman JL, Kuhlow CJ, Crowley JT, Benach JL. The enolase of Borrelia burgdorferi is a plasminogen receptor released in outer membrane vesicles. Infect Immun. 2012; 80:359–68.
70). Kadurugamuwa JL, Beveridge TJ. Delivery of the non-membrane-permeative antibiotic gentamicin into mammalian cells by using Shigella flexneri membrane vesicles. Antimicrob Agents Chemother. 1998; 42:1476–83.
71). Kato S, Kowashi Y, Demuth DR. Outer membrane-like vesicles secreted by Actinobacillus actinomycetemcomitans are enriched in leukotoxin. Microb Pathog. 2002; 32:1–13.
72). Rompikuntal PK, Thay B, Khan MK, Alanko J, Penttinen AM, Asikainen S, et al. Perinuclear localization of internalized outer membrane vesicles carrying active cytolethal distending toxin from Aggregatibacter actinomycetemcomitans. Infect Immun. 2012; 80:31–42.
73). Vipond C, Suker J, Jones C, Tang C, Feavers IM, Wheeler JX. Proteomic analysis of a meningococcal outer membrane vesicle vaccine prepared from the group B strain NZ98/254. Proteomics. 2006; 6:3400–13.
crossref
74). Shoberg RJ, Thomas DD. Specific adherence of Borrelia burgdorferi extracellular vesicles to human endothelial cells in culture. Infect Immun. 1993; 61:3892–900.
75). Nishio M, Okada N, Miki T, Haneda T, Danbara H. Identification of the outer-membrane protein PagC required for the serum resistance phenotype in Salmonella enterica serovar Choleraesuis. Microbiology. 2005; 151:863–73.
76). Boardman BK, Meehan BM, Fullner Satchell KJ. Growth phase regulation of Vibrio cholerae RTX toxin export. J Bacteriol. 2007; 189:1827–35.
77). Yokoyama K, Horii T, Yamashino T, Hashikawa S, Barua S, Hasegawa T, et al. Production of shiga toxin by Escherichia coli measured with reference to the membrane vesicle-associated toxins. FEMS Microbiol Lett. 2000; 192:139–44.
78). Fiocca R, Necchi V, Sommi P, Ricci V, Telford J, Cover TL, et al. Release of Helicobacter pylori vacuolating cytotoxin by both a specific secretion pathway and budding of outer membrane vesicles. Uptake of released toxin and vesicles by gastric epithelium. J Pathol. 1999; 188:220–6.
79). Ciofu O, Beveridge TJ, Kadurugamuwa J, Walther-Rasmussen J, Høiby N. Chromosomal beta-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. J Antimicrob Chemother. 2000; 45:9–13.

Figure 1.
Translocation of PagK1/PagK2/PagJ into the host cytoplasm. Translocation of PagK1, PagK2, and PagJ into the cytoplasm was examined using CCF4-AM cleavage (45). PagK homologue proteins were fused with β-lactamase (Bla), which can cleave CCF4-AM to change its emission spectrum from green to blue when it is translocated into the cytoplasm. RAW264.7 cells were infected with wild-type Salmonella and Bla fusion strains for 18 hours. As a positive control, SseJ (a well-studied virulence effector) was tagged with Bla and examined together. Cells were loaded with CCF4-AM for 2 h and the cleavage of fluorescent substrates was investigated at emission wavelengths of 528 nm (green) and 457 nm (blue). Salmonella expressing Tomato fluorescence (pWKS30-Tomato) are shown in red.
jbv-45-1f1.tif
Table 1.
OMV-associated virulence proteins
OMV-associated proteins Species Activity Reference
Apx toxin Actinobacillus pleuropneumoniae Hemolysis, Cytolysis (59)
BabA, SabA Helicobacter pylori Adhesin (60)
CagA Helicobacter pylori Cytotoxicity-associated immunodominant antigen (61)
Cholera toxin (CTX) Vibrio cholera Adenylate cyclase activation (62)
Cif Pseudomonas aeruginosa Cystic fibrosis transmembrane conductance regulator (CFTR) inhibition (63)
Cytolethal distending toxin (CDT) Aggregatibacter actinomycetemcomitans, Campylobacter jejuni, Escherichia coli DNA damage, Cell death (64, 65)
Cytotoxic necrotizing factor type 1 (CNF1) Uropathogenic Escherichia coli Cytotoxic (66)
Cytotoxin ClyA Escherichia coli O111:H- Pore-forming (48)
Gingipains (RgpA, RgpB, Kgp) Campylobacter jejuni, Porphyromonas gingivalis Trypsin-like cysteine proteinases (22, 67)
Heat-labile enterotoxin (LT) Enterotoxigenic Escherichia coli Enterotoxic and vacuolating activities (68)
HmuY Porphyromonas gingivalis Sequestering heme from host carriers (19)
HtrAb Borrelia burgdorferi Proteolytic activity (69)
IpaB, IpaC, IpaD Shigella flexneri Invasins (70)
Leukotoxin (Ltx) Aggregatibacter actinomycetemcomitans, Campylobacter jejuni Pore-forming (71, 72)
NarE Neisseria meningitidis Iron-containing ADP-ribosyltransferase (73)
OmpA Aggregatibacter actinomycetemcomitans Adhesin/invasion, immune evasin, biofilm formation (71)
OspA, OspB Borrelia burgdorferi Outer membrane surface antigens (74)
PaAP Pseudomonas aeruginosa Aminopeptidase (36)
PagC Salmonella enterica serovar Choleraesuis Required for survival (75)
PagJ, PagK1, PagK2 Salmonella enterica serovar Typhimurium Required for survival (45)
PorA Neisseria meningitidis Outer membrane protein (OMP) antigens (73)
RTX (repeat-in-toxin) toxin Vibrio cholera Cross-linking of actin cytoskeleton (76)
Serralysin Pseudomonas aeruginosa Extracellular protease (60)
Shiga toxins (Stx, Stx1, Stx2) Pseudomonas aeruginisa, E. coli Protein synthesis inhibition (13, 77)
UspA1, UspA2 Moraxella catarrhalis Surface adhesion protein (39)
VacA Helicobacter pylori Vacuolating cytotoxin (78)
α-Hemolysin (HlyC) Enterohemorrhagic E. coli Acyltransferase inducing hemolysin (68)
β-Lactamase Pseudomonas aeruginosa Antibiotics resistance (79)
TOOLS
Similar articles