Journal List > J Korean Ophthalmol Soc > v.54(10) > 1009510

Lee, Kim, Kim, Ahn, Chung, Choi, and Park: Changes in Optic Nerve Parameter Measurements on Spectral-Domain Optical Coherence Tomography, after Cataract Surgery

Abstract

Purpose

To assess changes in peripapillary retinal nerve fiber layer (RNFL) thickness and optic nerve head parameters after cataract surgery by using spectral-domain optical coherence tomography (OCT).

Methods

Twenty-nine eyes of 26 patients, who underwent cataract surgery, were imaged with spectral-domain OCT before and after surgery to measure peripapillary RNFL thickness and optic nerve head parameters, signal strength (SS), quadrant, 12 clock-hour RNFL thickness, rim area, disc area, cup/disc area ratio, vertical cup/disc ratio, and cup volume.

Results

The postoperative RNFL thickness and SS were higher than before surgery (p < 0.05). Regarding optic nerve head parameters, rim area was 0.07 ± 0.10 mm2 higher than before surgery and disc area, cup/disc area ratio, vertical cup/disc ratio, cup volume were 0.07 ± 0.15 mm2, 0.04 ± 0.04, 0.03 ± 0.05, 0.04 ± 0.06 mm3, respectively, lower than before surgery (p < 0.05).

Conclusions

Cataracts may decrease peripapillary RNFL thickness measurement and SS on OCT scans and change other optic nerve head parameters. Peripapillary RNFL thickness and optic nerve head parameter measurements should be interpreted with caution in eyes with significant cataracts.

References

1. Quigley HA, Addicks EM, Green WR, Maumenee AE. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol. 1981; 99:635–49.
2. Weinreb RN, Shakiba S, Zangwill L. Scanning laser polarimetry to measure the nerve fiber layer of normal and glaucomatous eyes. Am J Ophthalmol. 1995; 119:627–36.
crossref
3. Schuman JS, Hee MR, Puliafito CA. . Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol. 1995; 113:586–96.
crossref
4. Hood DC, Kardon RH. A framework for comparing structural and functional measures of glaucomatous damage. Prog Retin Eye Res. 2007; 26:688–710.
crossref
5. Budenz DL, Chang RT, Huang X. . Reproducibility of retinal nerve fiber thickness measurements using the stratus OCT in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci. 2005; 46:2440–3.
crossref
6. Hsu SY, Tung IC, Sheu MM, Tsai RK. Reproducibility of peripapillary retinal nerve fiber layer and macular retinal thickness measurements using optical coherence tomography. Kaohsiung J Med Sci. 2006; 22:447–51.
crossref
7. Huang D, Swanson EA, Lin CP. . Optical coherence tomography. Science. 1991; 254:1178–81.
crossref
8. Hee MR, Izatt JA, Swanson EA. . Optical coherence tomography of the human retina. Arch Ophthalmol. 1995; 113:325–32.
crossref
9. Guedes V, Schuman JS, Hertzmark E. . Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology. 2003; 110:177–89.
crossref
10. Wollstein G, Schuman JS, Price LL. . Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. Arch Ophthalmol. 2005; 123:464–70.
crossref
11. Sakata LM, Deleon-Ortega J, Sakata V, Girkin CA. Optical coherence tomography of the retina and optic nerve - a review. Clin Experiment Ophthalmol. 2009; 37:90–9.
crossref
12. Leung CK, Cheung CY, Weinreb RN. . Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis. Invest Ophthalmol Vis Sci. 2010; 51:217–22.
crossref
13. van Velthoven ME, Faber DJ, Verbraak FD. . Recent developments in optical coherence tomography for imaging the retina. Prog Retin Eye Res. 2007; 26:57–77.
crossref
14. Kok PH, van Dijk HW, van den Berg TJ, Verbraak FD. A model for the effect of disturbances in the optical media on the OCT image quality. Invest Ophthalmol Vis Sci. 2009; 50:787–92.
crossref
15. Stein DM, Wollstein G, Ishikawa H. . Effect of corneal drying on optical coherence tomography. Ophthalmology. 2006; 113:985–91.
crossref
16. Savini G, Zanini M, Barboni P. Influence of pupil size and cataract on retinal nerve fiber layer thickness measurements by Stratus OCT. J Glaucoma. 2006; 15:336–40.
crossref
17. Smith M, Frost A, Graham CM, Shaw S. Effect of pupillary dilatation on glaucoma assessments using optical coherence tomography. Br J Ophthalmol. 2007; 91:1686–90.
crossref
18. El-Ashry M, Appaswamy S, Deokule S, Pagliarini S. The effect of phacoemulsification cataract surgery on the measurement of retinal nerve fiber layer thickness using optical coherence tomography. Curr Eye Res. 2006; 31:409–13.
crossref
19. van Velthoven ME, van der Linden MH, de Smet MD. . Influence of cataract on optical coherence tomography image quality and retinal thickness. Br J Ophthalmol. 2006; 90:1259–62.
crossref
20. Budenz DL, Anderson DR, Varma R. . Determinants of normal retinal nerve fiber layer thickness measured by Stratus OCT. Ophthalmology. 2007; 114:1046–52.
crossref
21. Sánchez-Cano A, Pablo LE, Larrosa JM, Polo V. The effect of phacoemulsification cataract surgery on polarimetry and tomography measurements for glaucoma diagnosis. J Glaucoma. 2010; 19:468–74.
crossref
22. Mwanza JC, Bhorade AM, Sekhon N. . Effect of cataract and its removal on signal strength and peripapillary retinal nerve fiber layer optical coherence tomography measurements. J Glaucoma. 2011; 20:37–43.
crossref
23. Savini G, Zanini M, Carelli V. . Correlation between retinal nerve fibre layer thickness and optic nerve head size: an optical coherence tomography study. Br J Ophthalmol. 2005; 89:489–92.
crossref
24. Kok PH, van den Berg TJ, van Dijk HW. . The relationship between the optical density of cataract and its influence on retinal nerve fibre layer thickness measured with spectral domain optical coherence tomography. Acta Ophthalmol. 2013; 91:418–24.
crossref
25. Sim JO, Park CK. Optic nerve head analysis obtained by optical coherence tomography for the diagnosis of glaucoma in Koreans. J Korean Ophthalmol Soc. 2004; 45:1885–92.
26. Iliev ME, Meyenberg A, Garweg JG. Morphometric assessment of normal, suspect and glaucomatous optic discs with Stratus OCT and HRT II. Eye (Lond). 2006; 20:1288–99.
crossref
27. Schuman JS, Wollstein G, Farra T. . Comparison of optic nerve head measurements obtained by optical coherence tomography and confocal scanning laser ophthalmoscopy. Am J Ophthalmol. 2003; 135:504–12.
crossref
28. Greaney MJ, Hoffman DC, Garway-Heath DF. . Comparison of optic nerve imaging methods to distinguish normal eyes from those with glaucoma. Invest Ophthalmol Vis Sci. 2002; 43:140–5.
29. Aydin A, Wollstein G, Price LL. . Optical coherence tomography assessment of retinal nerve fiber layer thickness changes after glaucoma surgery. Ophthalmology. 2003; 110:1506–11.
crossref
30. Liu L, Zou J, Huang H. . The influence of corneal astigmatism on retinal nerve fiber layer thickness and optic nerve head parameter measurements by spectral-domain optical coherence tomography. Diagn Pathol. 2012; 7:55.
crossref

Table 1.
Clinical characteristics of patients
Cirrus HD-OCT, Zeiss
Numbers (eyes : patients) 29 : 26
Age (years) 68.55 ± 9.24
Sex (male : female) 10 : 16
Eye (right : left : both) 10 : 13 : 3
Preoperative SE (diopter) 1.04 ± 1.18
Preoperative BCVA (log MAR) 0.33 ± 0.29
Preoperative IOP (mm Hg) 12.62 ± 3.02
Types of lens opacities (cortical : nuclear : posterior) 24 : 3 : 2
Types of Intraocular lens (BioVue4PAL® : Teklens II®) 20 : 9
Follow up (days) 31.48 ± 12.95

Values are presented as mean ± SD.

SD = standard deviation; SE = spherical equivalent; BCVA = best corrected visual acuity; IOP = intraocular pressure.

Table 2.
Comparison of RNFL parameter between preoperative, postoperative data measured by Cirrus HD-OCT
Parameter Preoperative Postoperative Difference p-value*
Signal strength 3.48 ± 1.18 5.67 ± 1.46 2.19 ± 1.72 <0.001
RNFL (μm) Superior 100.40 ± 15.48 108.91 ± 19.00 8.52 ± 13.79 0.001
Nasal 60.78 ± 11.10 67.24 ± 11.37 6.47 ± 5.40 <0.001
Inferior 102.45 ± 16.67 116.03 ± 18.34 13.59 ± 12.29 <0.001
Temporal 60.81 ± 10.01 66.05 ± 13.04 5.24 ± 7.07 0.001
Clock hour 1 93.43 ± 24.39 103.21 ± 27.65 9.78 ± 13.54 0.001
2 71.64 ± 15.35 78.74 ± 15.15 7.10 ± 7.22 <0.001
3 53.07 ± 10.54 58.85 ± 11.58 5.78 ± 5.73 <0.001
4 57.43 ± 10.69 64.69 ± 12.36 7.26 ± 7.93 <0.001
5 94.19 ± 25.58 103.21 ± 28.33 9.02 ± 12.20 0.001
6 112.48 ± 25.82 123.16 ± 28.38 10.67 ± 17.79 0.001
7 100.74 ± 27.59 121.45 ± 29.96 20.71 ± 17.26 <0.001
8 60.03 ± 13.26 67.76 ± 16.46 7.72 ± 7.19 <0.001
9 51.67 ± 11.93 55.93 ± 12.31 4.26 ± 7.39 0.001
10 70.48 ± 13.25 74.60 ± 15.33 4.12 ± 13.85 0.003
11 101.31 ± 23.70 110.02 ± 25.34 8.71 ± 24.46 0.012
12 104.36 ± 21.02 113.67 ± 22.46 9.31 ± 14.25 0.004
Average 81.05 ± 9.46 89.53 ± 11.51 8.48 ± 6.58 <0.001

Values are presented as mean ± SD.

* Calculated by Wilcoxon's signed-ranks test.

Table 3.
Comparison of ONH parameter between preoperative, postoperative data measured by Cirrus HD-OCT
Parameter Preoperative Postoperative Difference p-value*
ONH Rim area (mm2) 1.13 ± 0.21 1.20 ± 0.24 0.07 ± 0.10 0.002
Disc area (mm2) 2.08 ± 0.52 2.01 ± 0.48 −0.07 ± 0.15 0.003
Cup / disc area ratio 0.63 ± 0.15 0.58 ± 0.17 −0.04 ± 0.04 <0.001
Vertical cup / disc ratio 0.59 ± 0.14 0.56 ± 0.16 −0.03 ± 0.05 0.001
Cup volume (mm3) 0.26 ± 0.27 0.23 ± 0.24 −0.04 ± 0.06 0.001

Values are presented as mean ± SD.

* Calculated by Wilcoxon's signed-ranks test.

Table 4.
Spearman's correlation between change in average RNFL thickness and signal strength (SS), IOP (intraocular pressure)
Factor Rho p-value*
Preoperative SS 0.03 0.88
Postoperative SS 0.21 0.28
SS change 0.14 0.46
IOP change −0.23 0.22

* *Calculated by Spearman's correlation.

Table 5.
Spearman's correlation between change in optic nerve parameters and signal strength (SS), IOP (intraocular pressure)
Factor Rho p-value*
Rim area Preoperative SS 0.02 0.94
Postoperative SS −0.11 0.57
SS change −0.23 0.22
IOP change 0.04 0.84
Disc area Preoperative SS 0.17 0.37
Postoperative SS −0.33 0.08
SS change −0.51 0.005
IOP change 0.06 0.77
CDAR Preoperative SS 0.15 0.44
Postoperative SS −0.10 0.60
SS change −0.16 0.40
IOP change −0.29 0.13
VCDR Preoperative SS 0.26 0.17
Postoperative SS −0.09 0.66
SS change −0.25 0.19
IOP change −0.33 0.08
Cup volume Preoperative SS 0.21 0.28
Postoperative SS −0.19 0.34
SS change −0.30 0.11
IOP change 0.13 0.51

* Calculated by Spearman's correlation.

CDAR = cup / disc area ratio; VCDR = vertical cup / disc ratio.

TOOLS
Similar articles