INTRODUCTION

Aging is a natural, biological process. Patients want to overcome the aesthetic problems associated with facial aging. Plastic surgeons have tried facelifts to meet patients' expectations [1,2]. With the development of society and technology, patients prefer simple, less-invasive procedures for rapid recovery. A barbed suture lift can meet the requirement for a minimally invasive facial rejuvenation procedure.

Former thread lifts have used either a floating or fixed type thread [1]. But when we consider the functional anatomy of the face in terms of facial expressions and mastication, and a natural looking appearance after surgery, a floating-type thread lift is preferred for the mobile area of the face and a fixed-type thread lift is recommended for use in relatively fixed areas. The authors call this method the combined-type thread lift. The authors have performed this type of facelift in 28 patients with satisfactory results.

METHODS

Mendelson et al. [3,4] classified the region of the face into the mobile anterior face involved in facial expressions and the fixed lateral face overlying masticatory structures (Fig. 1). The retaining ligaments are located on a vertical line from the lateral orbital rim, which divides the anterior and lateral face.

We drew a vertical line from the lateral orbital rim (shown in Fig. 2) and applied a fixed-type thread at a point lateral to the line. Hair was shaved around the slit incision sites. The rounded needle with thread entered the incision site and was anchored in the deep temporal fascia. The central portion of a 43 cm-sized, Blue Rose™ thread was anchored in the deep temporal fascia, using the same...

The Catholic Institute Review Board approved our study.

No potential conflict of interest relevant to this article was reported.
method. The threads pull soft tissue toward four predetermined points (Fig. 2A and C).

Next, the floating-type threads (17 cm-sized Blue Rose thread) are inserted to lift the ptotic anterior face from the hair line (Fig. 3A and B). These threads gather the soft tissues and pull the ptotic soft tissue from the bottom. Fig. 4 shows the immediate postoperative photo before cutting the ends of the threads.

Improvements reported by the patients were investigated using the Global Aesthetic Improvement Scale (GAIS; Table 1) [5]. The preoperative and postoperative photos were assessed using GAIS by a third-party physician who was not involved in the operation.

RESULTS

Patient demographics are summarized in Table 2. Eighteen patients out of 28 were followed for over 3 months. Assessments were made using postoperative photos and defined by GAIS score. Five patients (28%) had a GAIS score of 2, 10 patients (55%) had a GAIS score of 3, 2 patients (11%) had a GAIS score of 4, and one patient was unsatisfied with the surgical results. This patient received an additional facelift.

No major complications were reported during the follow-up period. Some minor complications, including skin dimples by the

Table 1. Global Aesthetic Improvement Scale (GAIS)

<table>
<thead>
<tr>
<th>Degree</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Exceptional improvement</td>
</tr>
<tr>
<td>2</td>
<td>Very improved patient</td>
</tr>
<tr>
<td>3</td>
<td>Improved patient</td>
</tr>
<tr>
<td>4</td>
<td>Unaltered patient</td>
</tr>
<tr>
<td>5</td>
<td>Worsened patient</td>
</tr>
</tbody>
</table>

Fig. 1. A vertical line from the lateral orbital rim divides the face into the mobile anterior and fixed lateral regions.

Fig. 2. Fixed-type lift for the lateral face. (A) A red dotted line divides the face into the anterior and lateral regions. The thread was inserted (red dots) and pulled (red X) through the holes made by the needle, and both ends of the thread were fixed. Yellow arrows indicate the unidirectional, barbed sutures. (B) The ptotic soft tissues were lifted toward the deep temporal fascia by a rounded needle. (C) The vector of the force (yellow arrows) was toward the temporal area.
Fig. 3. Floating-type lift for the anterior face. (A) The bidirectional, barbed threads are shown (yellow arrows). (B) The soft tissues were gathered toward the midline. Yellow arrows show the vector of the force. The ptotic soft tissues on lower portion were lifted.

Fig. 4. Before cutting the end of the fixed-type threads, the ends exited the inferior and medial sides. Floating-type threads are shown in the entrance. The ends of the threads were pulled appropriately and cut so as not to expose the threads.

Strong pulling force during the thread cutting section, were observed. Minor complications that developed during the early postoperative period were improved by massage.

Case 1
A 26-year-old female visited our outpatient clinic complaining of soft tissue drooping after a facial contouring surgery. She received the combined facelift surgery and was satisfied with the results at the 3-month postoperative follow up (Fig. 5).

Case 2
A 56-year-old female, who showed facial soft tissue sagging, was...
Fig. 5. [A] Preoperative photograph of the 26-year-old patient who complained of soft tissue drooping. [B] Postoperative photograph at 3 months in which the degree of soft tissue drooping was much improved.

Fig. 6. [A] Preoperative photographs of the 56-year-old female. [B] On postoperative day 7, there were some lines and dimples on the face. [C] By 3 months, the patient had a natural looking appearance. Although there was an abundance of soft tissue in the lower face, she was satisfied with the final results without the need for additional procedures.

unable to get a standard facelift performed for personal reasons. She underwent a thread-based facelift instead. She was received follow-up examinations at 7 days and 3 months. At the 7-day follow up, there were some local dimples on her face due to an imbal-

tance between the pulling forces. These dimples were improved at the 3-month follow up. The cosmetic result was a natural looking face (Fig. 6).
trude from the cylinder-shape thread and is strongly anchored in
is decreased. Blue Rose thread has dents but not cuts, which pro-
ens the tension of the thread, because the diameter of the cut area
have cuts in the cylinder-shaped thread, which weak-
and the malar area was not broadened (Fig. 7). Fourth, barbed thread
retained in the central region of the suture using a floating-type thread
ing in Asian patients. Using the author’s method, the tissues were
the malar area was broadened after the use of fixed-type thread lift
mantained via connection to a fixed point in the lateral face. Third,
ptotic soft tissue of the anterior face can be lifted and the strength
is not enough strong to achieve satisfactory results. However, the
ion is possible. Second, the pulling force of the floating-type thread
pression. With floating-type thread lifting, however, natural anima-
olved into the mobile anterior and fixed lateral regions. If lifted with a
The combined method has some benefits. First, the face is divid-
ed into the mobile anterior and fixed lateral regions. If lifted with a
fixed-type thread, the anterior face would display an awkward ex-
pression. With floating-type thread lifting, however, natural anima-
tion is possible. Second, the pulling force of the floating-type thread
is not enough strong to achieve satisfactory results. However, the
ptotic soft tissue of the anterior face can be lifted and the strength
maintained via connection to a fixed point in the lateral face. Third,
the malar area was broadened after the use of fixed-type thread lift-
ing in Asian patients. Using the author’s method, the tissues were
retained in the central region of the suture using a floating-type thread
and the malar area was not broadened (Fig. 7). Fourth, barbed thread
is known to have cuts in the cylinder-shaped thread, which pro-
trude from the cylinder-shape thread and is strongly anchored in
the tissue.

The authors believe that combined type lifting is much more ef-
fective than former thread lifting. The absorbable suture used in
the present study contains polydioxanone, and thus the lift cannot
be sustained for a long time. It results in a natural looking ap-
pearance, but maintenance of the lift is compromised.

However, thread lifting with absorbable suture is expected to find
wide application, as Botox and filler injections have become popu-
lar procedures despite their disadvantages. Absorbable sutures are
safer than nonabsorbable sutures, considering that the removal of
the nonabsorbable filler is difficult.

The final results of thread-based lifts can only be evaluated sub-
jectively. Thus, the effects of variables such as skin type, race, age,
and history of smoking on final outcomes can be discussed as com-
lications. Rachel et al. [9] reported that the incidence of complica-
tions or early recurrence was independent of patient age, type of
thread, or technique. In the present study, the effects of such vari-
able suture was of the floating type that gathered tissues in the middle
of the suture without anchorage at either end [6]. Unidirectional
sutures were then introduced to enhance stability by anchoring
both ends at fixed points [7]. Recently, absorbable and nonabsorb-
able sutures of various lengths and shapes and sizes of needles have
been used for other regions of the face [8].

Most previous reports have dealt with only the floating or fixed
type of thread lifting [1,7]. The authors used combined thread lifting
and achieved postoperative improvements in 83% of the patients.

The combined method has some benefits. First, the face is divid-
ed into the mobile anterior and fixed lateral regions. If lifted with a
fixed-type thread, the anterior face would display an awkward ex-
pression. With floating-type thread lifting, however, natural anima-
tion is possible. Second, the pulling force of the floating-type thread
is not enough strong to achieve satisfactory results. However, the
ptotic soft tissue of the anterior face can be lifted and the strength
maintained via connection to a fixed point in the lateral face. Third,
the malar area was broadened after the use of fixed-type thread lift-
ing in Asian patients. Using the author’s method, the tissues were
retained in the central region of the suture using a floating-type thread
and the malar area was not broadened (Fig. 7). Fourth, barbed thread
is known to have cuts in the cylinder-shaped thread, which pro-
trude from the cylinder-shape thread and is strongly anchored in

DICUSSION

Facelifts using barbed sutures were introduced by Sulamanidze in
the late 1990’s [1]. Both thread-based and other surgical methods
were subsequently developed. The early, multi-dented, bidirection-
al suture was of the floating type that gathered tissues in the middle
of the suture without anchorage at either end [6]. Unidirectional
sutures were then introduced to enhance stability by anchoring
both ends at fixed points [7]. Recently, absorbable and nonabsorb-
able sutures of various lengths and shapes and sizes of needles have
been used for other regions of the face [8].

Most previous reports have dealt with only the floating or fixed
type of thread lifting [1,7]. The authors used combined thread lifting
and achieved postoperative improvements in 83% of the patients.

The combined method has some benefits. First, the face is divid-
ed into the mobile anterior and fixed lateral regions. If lifted with a
fixed-type thread, the anterior face would display an awkward ex-
pression. With floating-type thread lifting, however, natural anima-
tion is possible. Second, the pulling force of the floating-type thread
is not enough strong to achieve satisfactory results. However, the
ptotic soft tissue of the anterior face can be lifted and the strength
maintained via connection to a fixed point in the lateral face. Third,
the malar area was broadened after the use of fixed-type thread lift-
ing in Asian patients. Using the author’s method, the tissues were
retained in the central region of the suture using a floating-type thread
and the malar area was not broadened (Fig. 7). Fourth, barbed thread
is known to have cuts in the cylinder-shaped thread, which pro-
trude from the cylinder-shape thread and is strongly anchored in

REFERENCES

1. Sulamanidze M, Sulamanidze G. APTOS suture lifting methods: 10
2. Abraham RF, DeFatta RJ, Williams EF. Thread lift for facial rejuvena-
11:178-83.
p. 78-92.
4. Mendelson B, Wong CH. Changes in the facial skeleton with aging:
implications and clinical applications in facial rejuvenation. Aesthetic
Plast Surg 2012;36:753-60.
5. Savoia, A, Accardo C, Vannini F, et al. Outcomes in thread lift for fa-
cial rejuvenation: a study performed with happy lift revitalizing. Der-
matol Ther (Heidelb) 2014;4:103-14.
8. Paul MD. Barbed sutures in aesthetic plastic surgery: evolution of thou-
early recurrence in 29 patients after facial rejuvenation with barbed