Spontaneous Occlusion of Traumatic Carotid Cavernous Fistula with Pseudoaneurysm Formation-management with Neuroform Stent and Coiling
- A Case Report -

Hyun-Hee Ye, M.D., Chang-Won Cho, M.D., Chang-Soo Kim, M.D, June-Woo Park, M.D., Jae-Eon Lee, M.D., and Dae-Jo Kim, M.D.

Department of Neurosurgery, Radiology, Maryknoll Medical Center, Busan Catholic Health System, Busan, Korea

We experienced a case of traumatic carotid cavernous fistula (CCF) which was occluded spontaneously within 7 days after transfemoral carotid angiography with complete disappearance of symptoms. Traumatic CCF is almost always type A and known to rarely resolve spontaneously. The suggested mechanism of spontaneous occlusion were manual compression of carotid artery, hypotension during percutaneous or open direct carotid angiography under general anesthesia in the past as well as thrombogenicity of iodinated contrast media and catheterization procedure itself are more related with recent transfemoral carotid angiography. The pseudoaneurysm managed with coil or balloon should be frequently followed up due to compaction by the surrounding thrombus.

Key Words: Spontaneous occlusion · Traumatic CCF · Thrombogenicity · Contrast media · Pseudoaneurysm

INTRODUCTION

Traumatic carotid cavernous fistula (CCF) is mostly type A by Barrow’s classification which needs therapeutic intervention mostly and rarely resolve spontaneously. In contrast, dural forms of traumatic CCF are very rare and have a much more tendency to resolve spontaneously and show better response to conservative management. We experienced a case of spontaneous occlusion of type A traumatic CCF with pseudoaneurysm formation which was managed with stent assisted coiling.

CASE REPORT

A 38-year old male fell down and had blunt trauma to his head. He got admitted to local hospital on November 20, 2004. Ptosis developed on his right side 2 days after admission. During admission at the hospital for 33 days, he felt bruit in his head, progressive proptosis, exophthalmus and decreased visual acuity. The Magnetic resonance imaging checked one week after admission showed the prominent right ophthalmic vein which was unnoticed at that time on retrospective review (Fig. 1). He was transferred to another local hospital for diagnostic angiography which confirmed the traumatic CCF on December 24, 2004 (Fig. 2). He has felt bruit in his head until transfemoral carotid angiography (TFCA). He was transferred to our hospital one week later for therapeutic intervention on December 30, 2004. He had proptosis, ophthalmoplegia, ptosis and complained of headache, right eyeball pain and decreased visual acuity at outpatient clinic. However, bruit was not audible by auscultation and not felt by the patient, himself anymore. The right internal carotid angiogram checked one week earlier before transfer showed cavernous sinus opacification with early draining to superior ophthalmic vein (Fig. 2). Three-dimensional computed tomography angiography (3D-CTA) checked at our hospital showed aneurysm at C4/5 junction of right cavernous carotid artery and no draining vein (Fig.
HH Ye, et al.

V o l u m e 2 , N o 2
December, 2006

141

DISCUSSION

Barrow et al classified the CCF in according to the angiographic finding into 4 types2). Type A fistula is direct shunting between internal carotid artery and cavernous sinus and has no contribution from the meningeal branches of internal and external carotid artery. Type B, C and D are dural shunts between cavernous sinus and meningeal branches of internal and external carotid arteries. Traumatic CCF are almost always type A and 3% are dural forms2,5). Type A traumatic CCF rarely resolves spontaneously, about 3%, however, dural forms of CCF tends to

Fig. 1. Magnetic resonance imaging shows the prominent right ophthalmic vein.

Fig. 2. Right internal carotid artery angiogram shows cavernous sinus opacification with early draining to superior ophthalnic vein (dotted line).

Fig. 3. A: Three-dimensional computed tomography angiography shows aneurysm at C4/5 junction of right cavernous carotid artery and no draining vein. B: Follow up, right internal carotid artery angiogram shows the aneurysmal sac at the C4/5 junction with no opacification of cavernous sinus and draining vein.

3A). A follow up TFCA showed aneurysmal sac at the C4/5 junction, neck 3.5 mm and height 3 mm, dome 3.8 mm in size with no opacification of cavernous sinus and draining vein (Fig. 3B). The CCF was occluded spontaneously with pseudoaneurysm formation during the 7 days since diagnostic angiography. We tried the neuro form 2 stent-assisted coiling to occlude the pseudoaneurysm. The self expandable neuro form 2 stent was successfully deployed across the rent of carotid wall. However, the proximal end of stent was bent toward carotid lumen and the stent migrated distally a little bit by the catheter during the coiling procedure which was aborted (Fig 4A). Two months later, we did control TFCA and found out the size of pseudoaneurysm increased, neck 2.4 mm and dome 6 mm in size (Fig 4B). We tried Guglielmi detachable coil (GDC) embolization again and occluded the pseudoaneurysm successfully (Fig 4C). The patient showed rapid improvement since spontaneous occlusion of CCF and all the symptoms & signs were free when he left hospital. Control TFCA was done again 10 months later and showed partial filling of aneurysmal sac due to coil compaction without symptoms (Fig 4D).
Spontaneous Occlusion of Traumatic CCF with Pseudoaneurysm Formation

Fig. 4. Stent-assisted Guglielmi detachable coil (GDC) embolization for carotid cavernous fistula. A: Poststenting angiogram shows proximal end of stent bent toward carotid lumen. B: Two months later, right internal carotid artery angiogram shows the pseudoaneurysm increased in size. C: Right internal carotid artery angiogram at immediate post-GDC embolization shows complete occlusion of pseudo-aneurysm. D: 10 months later, right internal carotid artery angiogram shows partial filling of pseudoaneurysmal sac due to coil compaction.

resolve spontaneously more about 30%5,7,10,11,17,27). The spontaneous thrombosis of traumatic CCF with pseudoaneurysm formation were rarely reported15,20,21,23-31). Nishijima et al reported 5 cases of spontaneous occlusion of traumatic CCF verified by angiography on 1985 by retrospective literature review including their case23). Three of the five cases developed the false aneurysm after spontaneous occlusion of CCF and no further detail about the fate of false aneurysms was described. Most of the case reports of spontaneous occlusion of CCF were done by direct percutaneous carotid angiography or open carotid angiography under general anesthesia in the past15,24,26,30,31). However, spontaneous obliteration of CCF after TFCA was also reported rarely since first time on 1981 by Shields et al20,21,27). Several mechanisms of the spontaneous occlusion of traumatic CCF were suggested. Firstly, manual compression of carotid artery during the direct carotid angiography procedure which may reduce the pressure difference through the shunts and cause occlusion15,24,26,30,31). There was a case of spontaneous occlusion of CCF during orbital venogram in which a temporary decrease of pressure difference between the internal carotid artery and the cavernous sinus during dye injection through the superior opthamic vein may cause stasis of blood flow and thrombosis23). Secondly, hypotension could be a cause of occlusion20). Carotid angiography procedure was done under general anesthesia in the past with resultant hypotension which may reduce blood flow through the shunt and cause occlusion. There was a case of occlusion of preexisting CCF due to shock state from other cause24). Third one was contrast media used during the angiography23,24,28,29). The ionic and non-ionic contrast media are well known to activate the coagulation system and platelets in vivo study23). Lastly, the catheterization procedure itself induce activation of coagulation system and platelets through vessel injury and cause vessel spasm25). In this case, the CCF was occluded within 7 days after angiographic procedure which was performed by transfemoral route and not associated with hypotension and manual compression of carotid artery. The exact mechanism of spontaneous occlusion of CCF in this case is uncertain, but the thrombogenicity of contrast media and the catheterization procedure itself could be related with the occlusion of shunts. The natural history of pseudoaneurysm after spontaneous occlusion of traumatic CCF is controversial4,9,11,12,16,18,19,22). Even though spontaneous regression could be possible, they also could cause cerebral embolism and ischemic event, enlargement and recanalization22). In our case, the pseudoaneurysm enlarged significantly after two months which was managed neuroform2) stent assisted coiling successfully1,3,6,14). After 10 months, the pseudoaneurysm was partially filled with dye on control TFCA due to coil compaction. Higashida et al reported five cases of pseudoaneurysms in a series of 206 patients with direct CCF and found that direct placement of detachable balloons or coils into the pseudoaneurysm did not prevent further expansion or dissection of tear.
because no wall or tissue plane other than the thrombus existed to keep the embolic material in place\(^\text{12}\). Kinugasa et al used liquid embolic material instead of coil or balloon to obliterate the pseudoaneurysm to prevent the compaction\(^\text{16}\). The pseudoaneurysm should be followed up regularly to check up late recanalization due to compaction\(^{4,9,11,12,16}\).

CONCLUSION

Traumatic CCF could be occluded spontaneously very rarely. The mechanism of the spontaneous occlusion is unclear but the contrast media and/or the catheterization procedure itself could be related with this event. The pseudoaneurysm after spontaneous occlusion of CCF may cause cerebral embolic ischemia and/or recanalize to make CCF again. The pseudoaneurysm should be regularly followed up after coiling due to compaction to surrounding thrombus.

REFERENCES

