Abstract

A Study on the Differentiation of the Reproductive Organs at Early Pregnant Rats

Sung Rye Kim · Gyoung Ja Choi**
College of Medicine, Ewha Womans University
**The Graduate School of Education, Ewha Womans University

The present investigation has been undertaken to understand the mechanism of mammalian implantation process, by demonstrating the role of ovarian steroids in the differentiation of the reproductive organs.

Attempt was made to examine the activity of alkaline phosphatase(ALP) in the oviduct, antimesometrium and the mesometrium of the uterine on Day 3 and Day 6.
1) The difference of the activity in the oviduct was not founded on Day 3 and Day 6.
2) The effect of estradiol on the differentiation of the oviduct was appeared on Day 3.
3) The difference of differentiation was not founded in the antimesometrium and the mesometrium on Day 3.
4) The activity of ALP in the antimesometrium was higher than that in the mesometrium on Day 6.
5) The activity of ALP in antimesometrium on Day 6 was significantly higher than that observed on Day 3.
6) The effect of ovarian steroid hormones on the differentiation of the uterine endometrium on Day 6 was obviously higher than that on Day 3. In particular, the effect of progesterone was markedly observed on Day 6.

This study, therefore, clearly demonstrates that estradiol is effective the differentiation of the oviduct preparing implantation, but progesterone has much potent in the antimesometrium differentiation at the implantation period.

*본 연구는 1989년도 문교부 기초과학육성 연구비와 이화여자대학교 교수연구기금 연구비 지원으로 이루어졌음.
포유류 난자는 배란된 후 수란관상부에서 수정되고 4~5일을 수란관내에 머무르며 난을 거듭하여 포배(blastula)가 된 다음 자궁으로 향하여 착장한다. 이 기간에 생식수관은 어떤 기작으로 수정관으로 하여금 착장할 수 있는 환경, 발생을 하도록 유도하는지 의문이 생기게 된다.

자궁조직은 이 기간동안 배아를 착상시킬 환조건의 환경을 갖추기 위하여 대사활성과 분화작용이 활발하게 일어난다. 즉, 자궁내막조직의 분화는 초기 배아 발생유도와 같은 관련이 있으며, 특히 배아가 자궁내막조직에 착장하게 되는 배아와 내막조직사이의 인식이 필요함에 따라(12) 이란 인식의 매개는 자궁내 특성분리에 의하는 것으로 추정되며(13), 또한 배아에 공급해 줄 영양분을 생성, 분비해야 하나(7), 자궁내막조직의 세포성 성분과 자궁내막의 화학적 성분이 변화한다는 것이 밝혀져 있다(8). 또한 이러한 특성분리들은 혈정의 것과 비교해 보았을 때 농중도(9)에 의하여 자궁세포로부터 내장으로 분비되며 이와 같은 변화는 특히 estrogen과 progesterone과 같은 난소호르몬에 의한 영향이 큰 것으로 알려져 있다(10).

토끼에서 estrogen은 자궁내막조직이 분화되고 분비기능이 완성하게 될 때까지만 난자를 수란관에 머무르게 하고, progesterone는 자궁내막조직의 형태가 착상에 적합하도록 변화하는 시기에 맞추어 자궁내막 난자를 이동시킨다(11). 또한 난소 스테로이드호르몬 수란관과 자궁의 분비작용을 조절하여 수란관내액의 조성과 양적 변화에 영향을 미친다(12)13,14).

초기 임신기간에 착장을 위한 환경작용이 활발한 탈락아에서 염기성 인산화효소(alkaline phosphatase: ALP)의 활성이 증가되며, 동시에 단백질 합성도 증가되므로 ALP는 탈락아의 형성일(15), 혹은 표지효소(marker enzyme)로 하고 있다. 포유류의 착상 조절기작을 규명하려면 본인(17)의 연구의 일환에서 자궁내막 조직의 자궁내막성세포와 기질세포가 착상하여 ALP의 활성이 estrogen과 progesterone의 분비량상에 따라 다르며 이 호르몬의 포체세포가 다르다는 것을 알 수 있었다. 생쥐와 쥐에서는 포배가 자궁내막조직에 착장할때는 antimesometrium에 착장하는데 어떠한 기작으로 배아가 같은 자궁조직에서 antimesometrium을 인식하고 착장하게 되는지는 알려져 있지 않으며 그에 관한 연구는 전무한 상태이다.

그리므로 본인등은 착상조절기작을 규명하려는 연구에서 자궁내막조직에서 estrogen과 progesterone의 포체세포가 다르며, 이들 호르몬이 ALP 활성에 영향을 미치는 시기가 다르다는 것(17)과, estrogen은 착장할 수 있도록 필요한 요인이며, progesterone는 자궁이 착장할 준비를 하는 결정적 역할을 하는 것(18)을 관찰하였으므로 시기적으로 다양하게 그리고 호르몬에 분리되는 두 난소호르몬의 영향을 받는 자궁조직에서 착상호르몬 antimesometrium과 비교상호르몬 mesometrium이 분화되며 인식되는 기작에 관한 연구와 이 기간 동안 수란관분화에 미치는 영향까지 비교, 검토해 보는 것은 본인들이 수행하고 있는 착상 조절기작에 관한 연구에 박차를 가하게 될 것으로 생각되어 본 연구를 수행하였다.

실험재료 및 방법

A. 실험동물
본 실험에서는 생후 3~4개월(250±20g)의 성숙한 Sprague-Dawley의 환원 알료를 사용하였으며, 실험 진행 전에 조명장치(14시간 조명, 10시간 초등)가 되어 있는 곳에서 임신기간 적용시킨 후, 절 도달법에 의하여 발정주기를 조사한 후 발정 전기에 교배시켰다.

B. 실험군
1. 정상임신군(Intact)

 성숙한 알코 환원을 생식능력이 있는 수컷과 동시에 12시간 양아침, 절도로 정자가 관찰되면 이를 임신 제1일(Day 1)로 하였으며 임신 제 3일군(11), 임신 제 6일군(11)으로 구분하여 관찰하였다.

2. 난소제거 임신군(OVX)

 임신된 환원에서 임신 2일째 난소를 제거하
3. 난소제거 호르몬 처리

임신 2일에 난소를 제거하고, 호르몬 처리는 다음과 같이 표시하였다.
(1) 대조군(Vehicle) 처리군(V).
(2) Estradiol 처리군(E).
(3) Progesterone 처리군(P).

C. 실험방법

1. 난소제거

임신 2일에 Nembutal Sodium Solution(0.1ml/100g)을 복강주사하여 마취시킨 후, 빈복부 부분 절개수술로 양쪽 난소를 제거하였다.

2. 난소호르몬처리

임신 2일에 난소를 제거한 후 표 1에 표시된 대로 처리군에 17β-estradiol(1μg/개체)과 progesterone(2μg/개체)을 각각 단독으로 매 24시간 간격으로 3회 주주사하였다. 17β-estradiol과 progesterone은 ethyl alcohol로 용해시킨 후 sesame oil에 녹혔다. 대조군에는 용매인 oil만을 주주사하였다(표 1).

3. 시료 채취

매 실험군에 5마리의 동물을 이용하였고, 실험에 쓰일 시료는 다음과 같이 모았다. 먼저 각 실험군의 환위는 ether로 마취하고 수관관과 양쪽 자궁을 적출하여 ice-cold saline으로 적셔진 황치위에서 여분의 지방, 혈액을 깔끔히 제거한 후, 각 실험군의 자궁은 적상부위인 antimesometrium과 비적상부위인 mesometrium으로 분리한 후, 개체당 3ml의 ice-cold phosphate-buffered saline(PBS)내에서 자궁내막조직(endometrium)을 수확하였다. 시료채취의 전 과정은 4℃에서 행하였다.

4. ALP활성의 측정

분리해낸 수관관과 자궁조직의 적상부위와 비적상부위의 내막조직을 2000g에서 10분간 원심분리(Finnte GL, Heraeus Christ)하여 첨전물을 0.25M sucrose에 혼탁시키며 1.5ml eppendorf tube에 옮겨 초음파분쇄기(Sonic disemembrator, Fisher Model 300)로 30초간 sonication(output 30%)한 후 4℃에서 10000rpm로 10분간 원심분리하여(Beckman Model J2-21) 상층액을 사용하였다.

ALP 활성은 Bowers와 McComb(1975)의 방법을 변형하여 사용하였다. 즉, 조직내의 p-nitrophenol phosphate(P-NPP)가 헹유된 반응액과 작용시켜 유리되는 p-nitrophenol(P-NP)의 흡광도를 측정하여 효소의 활성도로 하였다. 즉 pH 10.33인 반응액(0.89M 2-Amino-2-ethyl-1-Propanol : 300 μℓ, 50mM MgCl₂ : 100μℓ, 300mM P-NPP : 100μℓ)에 조직의 100μℓ을 가하여 37℃에서 20분간 반응시킨 후 37.5% trichloroacetic acid(TCA) 0.3ml을 첨가하여 반응을 정지시킨 후, 2N NaOH 0.6ml로 제발색시킨 다음 분광광도계(spectrophotometer, Shimadzu, UV-150-02)로 흡광도를 측정하였다. 이때 standard로는 P-NP(sigma)를 사용하였다. 한편 단백 질량은 Bradford(1976)의 방법을 적용하였으며, 이때 standard로는 bovine serum albumin(BSA, sigma)을 사용하였다. ALP 활성도는 μ mole P-NP/mg protein/min로 나타내며, 각 군에서 측정한 효소활성도의 통계적

<table>
<thead>
<tr>
<th>Table 1. Design of experimental group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental group</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1) Control : Intact</td>
</tr>
<tr>
<td>: Ovariectomy(OVX.)</td>
</tr>
<tr>
<td>2) Treated : OVX.+ Vehicle(V)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

129
유의성 검정은 student’s t-test로 하였다.

결 과

초기 배아 발생기간 중 생식수관분화에 관한 기작을 고찰하고자 확장준비기간 동안 생식수관 분화가 가장 활발한 것으로 알려진 임신 3일 군과 확장 시기인 임신 6일 군에서 정상임신군과 난소예기 호르몬처리군에서 수란관조직과 자궁내막 조직의 ALP활성도를 고찰한 결과는 다음과 같다.

A. 수란관에서의 ALP활성

정상임신군과 난소예기 호르몬처리군의 수란관에서 ALP활성도를 그림 1에 나타내었으며, 정상임신군의 활성도를 기준치 100으로 하고, 혹은 용매처리군의 활성도를 기준치 100으로 하여 호르몬처리군의 활성도를 비교한 것을 그림 2, 3에 나타내었다.

1. 임신 3일군의 ALP활성도(그림 1)

정상 임신 3일군에서는 ALP활성도가 109.32µ mole인 반면 난소예기군에서는 93.88µ mole, 용매처리군에서는 87.15µ mole로 정상임신군에 비하여 활성도가 낮아지고 있으나 유의한 차이는 아니다. Estradiol처리군에서는 유의한 차이는 아니나 117, 68µ mole로 활성도가 가장 높아지고 있다. Progesterone처리군에서는 80.37µ mole로 정상임신군에 비하여 감소하고 있다.

정상임신군의 활성도를 기준치 100으로 하였을 때(그림 2) estradiol처리군만이 108의 비교치를

![Fig. 1. Alkaline phosphatase activity in the rat oviduct on Day 3 and Day 6.](image)

OVX : Ovariectomy.

V : Vehicle(0.1 ml sesame oil).

E : Estradiol(1μg/0.1 ml sesame oil).

P : Progesterone(2mg/0.1 ml sesame oil).
나타내어 정상임신군과 유사한 활성도를 나타내나
난소제거군에서는 86, 용매처리군에서는 80, pro-
gesterone처리군에서는 74로 정상임신군에 미치지 못하고 있다.
용매처리군의 활성도를 기준치 100으로 하였을 때(그림 3) estradiol처리군에서는 135의 비교치를 나타내어 estradiol의 영향을 나타내나 progeste-
rone처리군에서는 92를 나타내어 영향을 관찰할 수 없다(그림 1, 2, 3).

2. 임신 제 6일군의 ALP 활성도(그림 2)
정상임신 제 6일군에서 ALP 활성도는 107.14u
mole로 정상임신 제 3일군과 비슷한 활성도를 나
타낸다. 난소제거군에서는 70.84u mole로 정상임
신군에 비하여 유의한 차이(p<0.05)로 감소하고 있다. Estradiol처리군에서는 91.00u mole, proges-
terone 처리군에서는 90.26u mole로 난소제거군보
다는 다소 높아지고 있으나 정상임신군에는 미치지 못하고 있다.
정상임신군의 활성도를 기준치 100으로 하였을 때 각 처리군의 활성도의 비교치는 난소제거군에
서 66, 용매처리군에서 72, estradiol처리군에서는
85, progesterone처리군에서는 84를 나타낸다.
한편 용매처리군의 활성도를 기준치 100으로
하고 각 처리군의 활성도를 비교해 보았을 때 estr-
adial처리군과 progesterone처리군에서 118, 117를
나타내어 용매를 처리했을 때보다는 호르몬의 영

![Fig. 2. Relative value of alkaline phosphatase activity of the oviduct on Day 3 and Day 6 to the value of Intact rats.](image-url)
향이 나타나고 있다.

B. 차종에서의 ALP활성
정상임신군과 냉소체자 호르몬처리군의 자궁조직의 차단부위와 비차단부위에서 관찰한 ALP활성도 그림 4에, 정상임신군의 활성도를 기준치 100으로, 혹은 용매처리군의 활성도를 기준치 100으로 하여 호르몬처리군의 활성도의 비교를 그림 5, 6에 나타내었다.

1. 임신 제 3일군에서의 ALP활성도 (그림 4)
a. 차단부위 (antimesometrium) : 각 실험군의 활성도를 정상임신군과 비교하여 보면 정상임신군의 ALP활성도가 155.89μ mole이며 냉소체자군에서는 179.98μ mole로 약간 증가했으나 유의한 차이는 아니다. 용매처리군과 estradiol 처리군에서는 165.72μ mole, 165.85μ mole로 정상임신군의 활성도를 기준치 100으로 보았을 때 두 실험군의 비교치는 모두 106을 나타내어 활성의 차이가 없었다. progesterone처리군에서는 활성도가 156.76μ mole로 비교치가 101이 되어 정상임신군과 비슷한 활성도를 나타내었다 (그림 4, 5).

용매처리군의 ALP활성도 (165.72μ mole)를 기준치 100으로 했을 때 estradiol처리군에서는 100, progesterone처리군에서는 95로 용매처리군과 같은 활성도를 나타내었다 (그림 4, 6).

b. 비차단부위 (mesometrium) : 비차단부위에서의 ALP활성도는 정상임신군은 177.78μ mole, 냉소체자군에서는 155.57μ mole로 감소되거나 유의한 차이는 아니며 용매처리군에서는 144.71μ mole, estradiol처리군에서는 149.49μ mole, progesterone 처리군에서는 161.52μ mole를 나타내어 정상임신군의 활성도를 기준치 100으로 하고 비교하여 보면 용매처리군에서는 81, estradiol처리군에서는 84, progesterone처리군에서는 91를 나타내어 정상임신군의 활성도에 미치지 못하였다 (그림 4, 5).

용매처리군의 ALP활성도 (144.71μ mole)를 기준치 100으로 했을 때 estradiol처리군에서는 비교치가 103, progesterone처리군에서는 그 비교치가 112가 되어 progestrene의 영향이 나타났다 (그림 6).

2. 임신 제 6일군 (Day 6)에서의 ALP 활성 (그림 4)
a. 차단부위 : 정상임신군의 ALP활성은 155.14μ mole인데 반해 냉소체자군에서는 174.14μ mole, 용매처리군은 210.42μ mole로 정상임신군에 비해 높아졌으나 유의한 차이는 아니다. estradiol처리군에서는 239.18μ mole, progesterone처리군에서는 278, 82μ mole을 나타내어 정상임신군의 활성 도를 100으로 보았을 때 각각 그 비교치는 154, 180으로 현저히 증가하고 있으며 정상임신군에 비교하여 유의한 차이 (p<0.05) 로 높은 활성도를 나타내었다 (그림 4, 5).

용매처리군의 활성도 (210.42μ mole)를 기준치 100으로 했을 때 estradiol처리군의 비교치는 114, progesterone처리군에서는 133으로 높아졌다 (그림 6).

b. 비차단부위 : 비차단부위인 mesometrium에서의 ALP활성도는 정상임신군에서는 133.80μ
mole, 난소체기군에서는 130.44μ mole, 용매처리 군에서는 134.27μ mole로 정상임신군의 활성도를 100으로 하였을 때 용매처리군의 비교치는 100을 나타내어 정상임신군의 활성도와 같다. 정상임신 군에 비하여 estradiol처리군은 159.38μ mole로 그 비교치가 119가 증가되나 유의한 차이를 없었다. progestrone처리군에서는 212.32μ mole로 비교치가 159를 나타내어 유의한 차이(P<0.05)로 증 가되었으며 착상부위에서 마찬가지로 비착상부 위에서도 progestrone의 영향이 큰 것을 관찰할 수 있었다(그림 4, 5).

용매처리군의 활성도(134.27μ mole)를 기준치 100으로 했을 때 estradiol처리군의 비교치는 119, progestrone처리군에서는 158를 나타내어 착상부 위에서와 같이 호르몬의 영향이 관찰되었다(그림 6).

C. 임신 제 6일군의 착상부위와 비착상부위의 비교(그림 4)

각 처리군에서 착상부위의 활성도가 유의하게 (P<0.05) 높은 것을 그림 4에서 관찰할 수 있으며, 특히 progestrone처리군에서 영향이 크게 나타났 다. 이와같이 임신 제 6일군에서는 착상부위가 비착상부위에 비하여 활화가 활발히 일어나며 관찰할 수 있었다.

고찰

포유류 난자는 수란관 상부에서 착상된 후 난 학을 거듭하여, 4~5일간을 수란관에 머무르며 포배가 된 후에는 수란관을 벗어나 자궁으로 하강하여 착상하게 된다. 이 기간동안 수란관과 자 궁은 초기 배아 발생의 호조건의 환경을 갖추기 위하여 대사작용이 활발해지며 초기 배아에 궁급
할 영양분도 생성분비하게 된다. ALP는 영양물질의 수송과 관련있는 조직, 분비작용을 하는 기관. 그리고 분열중에 있는 조직에서 그 활성이 높게 나타나고 있다.\(^{21,22}\)

본인은 작장조절기작을 규명하려는 연구의 일환에서 ALP의 활성도는 발전추가미열\(^{22,23}\)과 초기 임신기간 중\(^{17}\) 자궁조직에서 관찰하였을 때 난소 호르몬인 estrogen과 progesterone에 영향을 받으며 이 두호르몬은 자궁조직의 내강상피세포와 기질세포의 이동 및 그 표적세포가 다르다는 것을 관찰할 수 있었다. 그러나 작장전 배아가 초기 임신기간 동안 4~5일이면 너무 크게 되는 수환관에 관한 연구와 자궁으로 이입한 배낭이 어떻게 작장부위인 antimesometrium을 인식하고 작상하게 되는지에 관한 연구는 거의 찾아볼 수 없으므로 본 연구에서는 초기 임신기간동안 수환관, 동화화와 작장부위와 비작장부위 분화에 미치는 난소 호르몬의 영향을 관찰, 비교하였 다. 임신 제 3일은 발정기와 같이 DNA, RNA 및 단백질 합성 증 대사작용이 활발하며\(^{18}\), 기질세포에서도 유사분열이 완성되다는 것이\(^{21}\)으로 보아 호르몬의 영향으로 대사작용이 활발한 시기로 간주됨으로 이 임신 제 3일과 바로 작장시기인 임신 제 6일군에서 관찰하였다.

수환관분화에 미치는 호르몬의 영향은 estradiol처리군의 임신 제 3일군에서 정상임신군의 활성도와 비교하였을 때 비교치가 108이 되고 있으나 progesterone처리군에서는 74로 감소하고 있다.
한편 용매처리군에서는 135, progesterone처리군에서는 92가 되고 있어 역시 estradiol의 영향이 큰 것을 알 수 있었다. 그러나 염신 제 6일군에서는 estradiol과 progesterone의 영향이 용매처리군보다 조금 높아서 비교치가 118, 117이 되고 있으나 정상임신군의 활성도와 비교하였을 때 비교치가 85를 나타내어 염신 제 3일군과는 달리 호르몬의 영향이 정상임신군에 미치지 못하고 있다. 또한 난소세기군의 경우에는 가장 낮은 활성도(70.64μ mole, 비교치 66)를 나타내고 있다(그림 1, 2).

이상의 연구 결과에서 수면관대조군에 미치는 난소 스테로이드호르몬의 영향을 관찰할 수 있었고 특히 estradiol의 영향이 큰 것을 알 수 있었으며 정상임신군의 경우 제 3일과 6일군의 활성도가 유사한(109.32μ mole, 107.14μ mole) 것으로 보아 초기 임신기간 중에는 시기적인 차이가 나타나지 않은 것으로 간주된다.

한편 본인은 자궁내막 조직을 기질세포층과 내강상피세포층으로 분리하여 호르몬의 표적세포의 특이성을 조사한 결과 estrogen은 자궁내막상피세포의 변화를 progesterone은 기질세포의 변화를 주로 촉진시키고 있어 estrogen과 progesterone의 표적세포가 다르다는 것을 관찰 보고한 바 있다.

그러므로 특히 착장시기의 착장부위에 미치는 호르몬의 영향이 어떠한지 의문이 생기게 되므로 본 실험에서는 임신 제 3일군과 제 6일에서 착장 부위의 비찰상 부위로 분리하여 착장부위 분화 조절기작에 관하여 고찰해 본 결과 착장부위 분화가 착장시기인 임신 제 6일에서 현저하게 활성화가 착장시기인 임신 제 6일에서 현저하게 활성화가
화되고 있었다. 특히 창상기기의 창상부위 분화에는 progesterone의 영향이 큰 것을 확인할 수 있었다. 이처럼 임신 제 6일의 창상부위에서 특히 progesterone의 영향이 크게 나타나는 본 실험의 결과는 창상준비에 있어 대사작용이 가장 활발한 임신 제 3일은 혈중 estrogen 농도가 second peak를 나타내는 시기이며, 창상기기인 임신 제 6일에는 progesterone이 현저하게 높아지며, 임신 제 6일의 자궁내막조직에서 ALP활성이 progesterone 처리군에서 높아지면서 형태적 관찰에서도 기질 세포층에서 탈락막 반응의 특정적인 현상의 permeability와 blister가 커진 edema현상을 관찰할 수 있었던 본인의 보고26)와도 일치한다. 또한 본 실험의 결과는 임신 제 6일 저녁과 임신 제 6일 아침에 자궁액이나 혈액의 호르몬, 그리고 혈관의 permeability가 창상부위에 비하여 창상부위에서 현저하게 증가한다는 McRae(1988) 등27)의 결과와 일치하며, 임신 제 6일 아침에 자궁혈관관계에서 혈관의 적경이 비창상부위에 비하여 창상부위가 월산 크다는 보고28)와도 일치하는 결과이다.

포유류 배아의 창상조절기작을 규명할 목적의 임관으로 창상전 배아발생에 호조간의 관점은 제 공하는 수란관과 자궁내막조직의 분화에 미치는 난소 스테로이드호르몬의 영향을 관찰하였다. 창상준비기간 동안 생성수단분화가 가장 활발한 임신 제 3일과 창상기기인 임신 제 6일군에서 정상 혹은 난소세균에 난소스테로이드호르몬인 estradiol과 progesterone를 주사한 임신군에서 수란관과 자궁내막조직의 창상부위와 비창상부위를 분리하여 자궁내막조직분화의 지표가 되는 ALP의 활성을 측정한 결과 다음과 같은 결론을 얻었다.

수란관에서는 정상임신 제 3일과 6일에서 ALP 활성을 차이가 없었으며 수란관분화에는 estradiol의 영향이 창상준비기간인 임신 제 3일에 나타났다.

자궁조직에서는 임신 제 3일군에서는 창상부위와 비창상부위간에 분화의 차이가 없었으며, 임신 제 6일군에서는 창상부위가 비창상부위에 비하여 ALP활성이 높았다. 창상부위의 ALP활성이 임신 제 3일에 비하여 임신 제 6일에서 훨씬 높았다. 자궁내막조직분화에 미치는 난소스테로이드호르몬의 영향은 임신 제 3일군에 비하여 임신 제 6일군에서 강하게 나타났으며, 특히 progesterone의 영향이 크게 나타났다.

본 실험의 결과로 미루어 보아 창상준비기간인 임신 제 3일에는 수란관분화에 estradiol의 영향이, 창상기기인 임신 제 6일에는 자궁조직의 창상부위분화에 progesterone의 영향이 훨씬 stronger하였다.

References

2) DeFeo VJ: Decidualization In : Cellular biology of the uterus Edited by Wynn RM, New York 1967 : pp
3) Finn CA, Martin L : Endocrine control of the timing of endometrial sensitivity to a decidua1 stimulus. Biol Reprod 1972 : 7 : 82-86
25) Kim SR, Kang SG, Ryu KZ, Cho WK : Estrogen and progesterone levels in peripheral plasma and the concentration of nuclear estradiol receptor in...

