해산물의 Vitamin B₁₂ 함량 측정

이화여자대학교 의과대학
박혜경·성낙응

Abstract

Vitamin B₁₂ Contents in Sea Products

Hae Kyung Park, M.D., N. E. Sung, M.D.
College of Medicine, Ewha Woman’s University,
Seoul, Korea

The content of Vitamin B₁₂ in various sea products common in Korea were evaluated by microbiological assay method using Lactobacilli leichmannii.

The results and discussion are presented.

서 론

Vitamin B₁₂는 Gorge Minot와 William Murphy가 약성혈색소이식에서 대량의 같은 휴식으로서 치료를 발견한 후 1948년에 Folkert와 Smith에 의해 각각 독립적으로 분리되고 결정되었으며, 1956년 Dorothy Hodgkin에 의해 산림질 구조가 밝혀졌다. 화학적 식재료인 C₉₈H₆₈C₇N₁₆P으로 중심부의 cobalt화합물로 바뀌며 pterin ring이며 하나의 nucleotide와 연결되어 있다.

Vitamin B₁₂는 화학적 isomerization등의 다양한 대사과정에 관여하며 혈액형성에 필수 물질을 하고 neuronal integrity에 중요하다고 알려져 있고 근육에서 중 식을 조장하는 인자로서 알려졌다20). 이 비 vita 민은 인체의 장기에 혈행되지 않음으로 음식으로서 공급되어야 한다. 식품증에서 Vitamin B₁₂의 함량이 높은 것은 돼육, 우유, 계란, 낙농제품 등이 포함된 동물단백이라는 것이 알려졌으나20), 이 지도 우리 채식성 식단을 포함한 해산물에 대한 함량 측정에 대한 보고는 거의 없는 점이다.

Lactobacilli leichmannii는 비활성 환경으로서 Vitamin B₁₂가 측정에 끓 필요 이상 향상소라는 것이 알려져 있다. 이 글을 이용한 Vitamin B₁₂ 측정은 R.L. Davis 등에 의하여 소개되어 그 결과성이 인정되며 있다21). 이에 저작권은 우리나라에 혼란 야기자 해산 물의 Vitamin B₁₂ 함량을 위한 Lactobacilli leichmannii를 이용한 미생물학적 방법으로 측정하여 그 결과를 보고 하는 바이다.

재료 및 방법

1) 측정 재료
 ① 균주 및 균액제조
 어류와 해조류 및 기타 해산물의 Lactobacilli leichmannii를 이용한 Vitamin B₁₂ 함량 측정을 위해서 사용한 균주는 국립보건검정원에서 분양받은 Lactobacilli leichmannii(ATCC 7830)이다.
 균액 제조는 Vitamin B₁₂ assay medium(Difco)에 5ml L. leichmannii를 37℃ 부양기에서 20시간 배양한 후 3000rpm에 30분간 원심분리하여 상층액을 백색 양식제를 섭취시켰던 5ml가 되게 한다. 다시 3000rpm에 10분간 원심분리하고 양식에 백기 성장 피세포를 접합하여 5ml가 되게 한 후 1000rpm에 10분간 원심분리하여 상층액 0.05ml를 사용하였다.

 ② 측정대상
 한국내 시장에서 흔히 구할 수 있는 종류로써 1978
년 1월에서 2월 사이에 서준시장에서 파매란 도합 28 가지의 해산물을 대량으로 측정하였다.

2) 측정방법

위에서 밝힌 해산물의 근육 5g을 깨끗이 떼어내고 mess cylinder에 넣고 deminerized 중류수를 넣어서 50ml가 되게 하였다.
 이중을 Virtis 45(Grinder New York)Homogenizer에서 분쇄한 후에 diastase 500mg 및 trypsin 20mg을 넣어서 37°C 부패기에서 24시간 반응하여 탄수 화합 및 단백질을 소화시켰다.
 이중을 여과한 후 다시 단백질을 유효시키기 위하여 100°C에서 30분간 가열 처리하고 시험구 반복시킬 목적으 로 active carbon 500mg을 넣고 유효화하여 다시 여과하였다. 이 역과액을 121°C에서 5분 병균서치하여 사용하였다.

별균관 Vitamin B12 assay medium 5ml가 들어있는 3개의 시험관에 앞서와 같이 처리한 흡착성 기판 해산물의 역과액을 측정하기위해 용이하게(5, 10, 30, 50, 100μg) 투여하여 1%을 넣고, 밀크 식량수로 코스 L. leichmannii 0.05ml분량을 각각 무균적으로 넣고 37°C 부패기에서 20시간 후가식 배양하였다.
 이중을 균낸 물질한 후 3ml을 채취하여 spectrophotometer(Buch and Lomb 20) λ=530에서 3개의 시험관의 흡착도를 측정하여 standard curve와 비교하였다.

이제 측정에 기초이 되는 standard curve는 Vitamin B12 assay medium 5ml가 다른 5개의 시험관에 Vitamin B12주사액(U.S.A. Rorisol 50)을 투여하여 5μg의 농도로 6개의 시험관에 넣고 37°C 부패기에서 20시간 후가식 배양하였다.
 위와같이 조제한 L. leichmannii 분액 0.05ml용 6개의 시험관에 넣고 37°C 부패기에서 20시간 후가식 배양하였다.

Table 1. Contents of Vitamine B₁₂ in fishes

<table>
<thead>
<tr>
<th>Name of fishes</th>
<th>Contents(μg/100g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>아지</td>
<td>(Horse-mackerel=Trachurus japonicus)</td>
</tr>
<tr>
<td>동배</td>
<td>(Alaska pollock, frozen=Theragra chalcogramma)</td>
</tr>
<tr>
<td>도두목</td>
<td>(Sand fish=Arctogopus japonicus)</td>
</tr>
<tr>
<td>정어</td>
<td>(Herring=Clupea pallasii)</td>
</tr>
<tr>
<td>고등어</td>
<td>(Mackerel=Scomber japonicus)</td>
</tr>
<tr>
<td>살치</td>
<td>(Spanish mackerel=Sawara niphoniae)</td>
</tr>
<tr>
<td>빙어</td>
<td>(Pompret=Scomatooides argenteus)</td>
</tr>
<tr>
<td>조기</td>
<td>(Yellowtail runner=Pseudenciaena manchuria)</td>
</tr>
<tr>
<td>종치</td>
<td>(Snipe-fish=Collabias saira(Brevoost))</td>
</tr>
<tr>
<td>편어</td>
<td>(Croaker=Nibea imbricata)</td>
</tr>
<tr>
<td>살치</td>
<td>(Hairtail=Trickurus)</td>
</tr>
<tr>
<td>홍어</td>
<td>(Thornback stingray=Raja keniel)</td>
</tr>
<tr>
<td>가게미</td>
<td>(Flounder(sole)=Pleuronectidae)</td>
</tr>
<tr>
<td>도미</td>
<td>(Snapper=Sparidae)</td>
</tr>
<tr>
<td>배구</td>
<td></td>
</tr>
<tr>
<td>Name of sea foods</td>
<td>Contents(mug/100g)</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>홍합 (Arkshell=Mytilus)</td>
<td>3000.0</td>
</tr>
<tr>
<td>개비조개 (Redshell=Anadara granosa bisenensis)</td>
<td>2850.0</td>
</tr>
<tr>
<td>바지락 (Shortnecked cram=Venerupis semidecussata)</td>
<td>937.5</td>
</tr>
<tr>
<td>모시조개 (Cord-shell=)</td>
<td>25.0</td>
</tr>
<tr>
<td>게 (Crab=Potamon spp.)</td>
<td>900.0</td>
</tr>
<tr>
<td>진복 (Abalone=Haliotis gigantea discus)</td>
<td>725.0</td>
</tr>
<tr>
<td>해삼 (Sea cucumber=Stichopus japonicus)</td>
<td>250.0</td>
</tr>
<tr>
<td>참호징어 (Cuttle fish=Sepia esculenta Hoyle)</td>
<td>125.0</td>
</tr>
<tr>
<td>새우 (Shrimp=Peneaus orientalis)</td>
<td>125.0</td>
</tr>
<tr>
<td>물복징어 (Cuttle fish, fresh=Sepiella mairdonii)</td>
<td>125.0</td>
</tr>
<tr>
<td>낙지 (Octopus=Octopus vulgaris)</td>
<td>75.0</td>
</tr>
<tr>
<td>새우(大) (Lobster=)</td>
<td>62.5</td>
</tr>
<tr>
<td>걸 (Oyster=Crassostrea gigas)</td>
<td>50.0</td>
</tr>
</tbody>
</table>

배양하였다.
여기에 별군 중추수를 1ml, 0.95ml, 0.9ml, 0.85 ml, 0.8ml, 0.75ml씩을 넣어서 값을 혼합하여 volum을 일정히 한후 이것의 3ml을 취하여 specctrophotometer에서 λ=530에서 읽어서 5회의 평균치를 취하여 standard curve로 하였다.(표 1 및 2참조).

결 과

생산품에서 Vitamin B12의 함량은 생산의 균육 100g에 대해서 야자가 325μg으로 가장 많이 함유되어 있고, 동물 312.5μg, 포유류 225μg, 척이 162.5μg로 비교적 많이 함유되어 있었다.

다음으로 고등어, 삽어, 빵어는 각각 75μg, 조기, 봉치는 각각 62.5μg가 함유되어 있고, 털어, 창치는 각각 50μg, 홍어는 37.5μg가 함유 되어 있었다.

가게미, 도미미미구는 각각 25μg가 함유되어 있었 다.
조개류 및 기타 해산물은 생선의 균육에서 보다 현저히 Vitamin B12 함량이 많았다. 그중에서도 홍합 100g에서 3000μg의 Vitamin B12가 함유되어 있어서 해산물중 가장 높은 함량을 보여 주었다.

개리조개도 홍합 다음으로 850μg, 비마락 937.5 μg므로 많이 함유되어 있다. 계 900μg, 갑오 725μg, 해삼 250μg로 많이 함유되어 있는 해산 물이다.

참호징어, 물복징어, 종등도 크기의 새우에는 각각 125μg가 함유되어 있고, 낙지 75μg, 큰새우에는 62.5μg, 물에는 50μg가 함유되어 있었다.

주로 단단한 배가거나 해산물을 주로 조개류, 게, 전복등에서 Vitamin B12가 많이 함유되어 있었다(표 1 및 2참조).

고 안

Lactobacilli leichmannii는 metachromatic granules을 가진 운동성이 있고 동근관을 가진 괴목으로 점막 이 지혈되고 석소를 나타내지 않는 균으로 효모, 곰팡, 염증등을 통한 분리된다.

보통 24~48시간 배양하여 본 실험에서는 의식상태에서 확장하고 20시간 후기성 배양하여 사용하였다.

최적온도는 35~40°C이며 45°C에서는 발효하나 15°C 이하에서는 발효하지 못한다.

영양소로 calcium pantothenate, niacin, folic acid, Vitamin B12가 필요한 배양이 카다로운 굴이며 Vitamin B12의 함량이 높은 곳에서 현저히 잘 자라기 에 충정 Crimea L. leichmannii가 이용된다.

다른 Lactobacilli는 생화학적으로 구분이 되는데 homofermentatively glucose를 불균하며 D-lactic acid를 만들며, maltose, sucrose, trehalose, cellobiose, amygdalin, dextran, Salicin 등을 분해하여 산을 형성하지만 lactose, arabinose, raffinose 등을 분해하지 못한다.

혈청학적으로 group이 알려져 있지 않고, 항원성은 높고 세포벽은 glycerol teichoic acid을 갖게 되고 peptidoglyca L-lysine-D-aspartate type이다.

Cobalamin의 혈중을 위해서 특수한 transport system이 있다. Stomach에서는 glycopolysaccharide intrinsic factor가 분비되는데 이것은 장관내에서 cobalamin과 결합한다. 이 복합체는 ileum에 위치하는 specific receptor에 결합한다. 이것은 releasing.
factor에 의해 배리어 ileal membrane를 통과하여 blood stream으로 이동된다.\(^{49}\)

C.A. Hall(1962)등은 신체 전체의 Vitamin B\(_12\)은 3~4mg으로 가정하고 배설되는 총량은 0.6~3\(\mu\)g이며 소변으로 0.2~1.5\(\mu\)g, 대변으로 0.2~0.5\(\mu\)g이 배설된다 하였으며\(^{50}\) Vitamin B\(_12\)은 소변, 대변이 모두 배설되거나 빠짐을 유지하기 위해서는 신장량의 음식에 대한 공급이 요구된다.

The Food and Nutritional Board of National research council에서 추천하는 Vitamin B\(_12\)량이 성인에서 3\(\mu\)g/day이며, 연령에 따른 섭취량의 차이가 있으며 배설 최소 요구량은 2.5\(\mu\)g이다\(^{110}\). 또한 임신과 수유시 4\(\mu\)g가 섭취되어야 한다.

Vitamin B\(_12\)의 결핍증으로 pernicious anemia, neurological lesion (spurce), nutritional amblyopia 등이 있다\(^{110}\).

악영양혈은 intrinsic factor의 결핍으로 cobalamin의 흡수가 장애된 것이며 환자에게 다양하고 같은 cobalamin의 source를 부여함으로 해토된다. 가장 확실한 치료는 헌혈 간적으로 cobalamin을 근육주사하는 것이다.

비뇨기계 질환의 Vitamin B\(_12\)를 측정할 수는 둔하다.\(^{110}\) S.A. Tauber(1957)등은 재신생에서 보다 가оля서 혈청에서의 Vitamin B\(_12\)의 level이 낮다고 하였다\(^{110}\). 또 순수한 재신생자들에서 Vitamin B\(_12\)가 저하된지 심한 혈청의 혈당이 저하된다고 하였다\(^{110}\).

A.A. Lear(1954)등은 정상인의 혈청의 B\(_12\)혈당은 532\(\mu\)g/ml이며 그 외에 약성 두月관자에서는 39\(\mu\)g/ml이고, megaloblastic 혈액학자는 307\(\mu\)g/ml로 보고하였다\(^{112}\).

W.R. Fitney(1953)등은 촉발에는 약성 두月관자에서 혈청의 Vitamin B\(_12\)의 농도가 측정이 간단한 것으로 되어 있는지 모르는 경우가 86~460\(\mu\)g/ml 높게 비례 약성 두月관자에서는 20\(\mu\)g/ml에 이르고 있다\(^{112}\).

Vitamin B\(_12\)의 결핍은 음식물의 섭취에서 오는 수가 많으나 음식물의 조리 과정도 문제가 있다고 생각되어 D.K. Banerjee(1953)등은 동식물의 식품에서 성공과 골반의 Vitamin B\(_12\)혈당의 비교 분석을 하였고 결과인 경우 상당량의 Vitamin의 손실이 있는지 보고하였다. 또 대부분의 성공의 식품에 약간의 Vitamin B\(_12\)가 함유되어 있다고 하였는데 이 결과는 본 실험에서의 일치하거나 약간하게도 성공의 종류가 다르기 때문에 비교 검토는 할 수 있겠다 \(^{112}\).

한국식물의 Vitamin B\(_12\)측정은 Euglena를 이용한 방법으로 측정할 것이 있으나 이것은 여러가지 이유에 의해 결과가 종종 때때로 보고되며 이러한 결과는 본 실험과 일치하였다.

결 론

우리나라에서 혈청 혈중의 Vitamin B\(_12\)의 함량 을 L. leichmannii 방법에 의하여 측정한 바이다. 동물, 소, 돼지, 친구 등에 많이 함유되어 있었다.

혈액에 있어서는 사람, 개비조개, 타지락 등에 혈청에 많은 함량이 있고, 기타 재, 정부, 식사 등에도 비로어 높은 함량을 가지고 있었다.

참 고 문 헌

— 116 —
14) 이기명 · 이근배 · 이충명 · 전현오 : 한국 식품의 바 티민 B₁₂성 분질함량, 서울대학교 논문집, 62–66.