Endovascular Management of the Wide-neck Aneurysms: the Applications of the Coils and Catheter

Chang-Woo Ryu, MD¹, Jun-Seok Koh, MD², Cheol Young Lee, MD², Eui-Jong Kim, MD¹

The endovascular treatment of aneurysms with wide-neck or the incorporated branch can be technically very challenging. Various neck protecting devices, such as temporary balloons or self-expanding stents are effective for management of the wide-neck aneurysm. However, these devices are not amenable to successful management of aneurysms with unfavorable configurations, because the introduction of additional devices into small intracranial vessels is technically demanding. Without the support of these neck protecting devices, the use of three-dimensional (3D) coils or coil delivery technique with the application of microcatheter can help to overcome the unfavorable configuration of the aneurysm. This article presents 3D coils, double catheter method, and catheter-assisted method for coil embolization of the wide-neck aneurysm independently with neck protecting device. These methods are considered as viable alternatives for management of wide-neck aneurysms. To make the strategy of the endovascular treatment of the wide-neck aneurysm, neurointerventionists should consider the aneurysm configuration, relationship between the aneurysm and parent artery, the presence of incorporated branch, proximal approach route, technical availability, the risk of thromboembolic complications, and antiplatelet therapy.

Key Words: Aneurysm; Endovascular therapy; Microcatheter; Coil

Endovascular coil embolization of intracranial aneurysms has become an accepted treatment option worldwide (1). However, principal disadvantage of embolization of aneurysms with detachable coils is that embolization could be limited by unfavorable shape of the aneurysms (2–5). Coils packed into the lumen of the wide-neck aneurysms have the inherent difficulty that coils can herniate into the parent vessels. The wide-neck of aneurysms also usually result in incomplete occlusion and correlate with a higher recanalization rate than the corresponding rates for small-necked aneurysms (2, 3). Therefore, the endovascular treatment of wide-neck aneurysms can be technically very challenging. Other unfavorable aneurysm configuration, major branches incorporating with the aneurysm fundus, is the main technical limitations, because this configuration may result in the thromboembolic complication during coil embolization of aneurysms.

Although these geometric factor limiting endovascular coil embolization of intracranial aneurysms, technical advance permit successful embolization of the aneurysms that cannot be treated otherwise. Various neck protecting devices, such as temporary balloons or self-expanding stents can increase the rate of successful
embolization (5–8). However, the introduction of additional devices into small intracranial vessels is technically demanding and the geometric configuration of the aneurysm does not allow the routine application of these techniques. These techniques also may not be effective for aneurysm with a branch incorporated into the sac. Another disadvantage is the increase of the cost associated with an additional device.

Without the support of these neck protecting devices, the use of three-dimensional (3D) coils or coil delivery technique with the application of microcatheter can help to overcome the unfavorable configuration of the aneurysm. This article presents the role of the 3D coils and various catheter techniques for coil embolization of the wide-neck aneurysm independently with neck protecting device.

THREE-DIMENSIONAL COILS

The Use of 3D shaped detachable coils enables the treatment of intracranial aneurysms with an unfavorable geometry, which would otherwise not be amenable to endovascular treatment without adjunctive techniques (9–11). In nascent stage of coil embolization, detachable coil had only a helical configuration and relied on a rather random combination of forces to generate a complex configuration with loops extending across the aneurysm neck (Fig. 1). Therefore, the first coil should be repeatedly pushed and pulled to achieve the favorable basket. The advantage of the 3D coil is that the coil has a complex shape with loops extending across the aneurysm neck because of its shape memory for a complex sphere.

The 3D coil is used as a first coil in the embolization of cerebral aneurysms in an attempt to form a basket, with coil loops bridging the aneurysm neck. It allows the complete treatment of some wide-necked aneurysms without the need for neck remodeling techniques. The benefit of 3D coil is not only the production of the stable coil frame but only the concentric filling which leads to better packing densities and creating a more stable filling of the aneurysm (11).

Complex fill coils that had developed after 3D coil have a propensity to form a 3D cage after deployment, and their comfortability is superior to that of 3D coils with subsequently less compartmentalization, allowing more homogeneous filling of irregular shaped aneurysm. Helical coils, however, are less stiff than 3D coils and may allow packing the small space. Therefore, helical coils more suitable to use for finishing coils or to fill the residual small lumen.

Several reports presented that the use of 3D coils could facilitate the treatment of wide-neck aneurysm not amenable to treatment with conventional helical coils and were useful for improving initial coil packing density (9–14). As these advantages of 3D coils, almost vendors have been producing not only helical filling coils but only 3D coils. Various coil loop designs are being researched for better comfortability without losing the robust 3D characteristics.

Fig. 1. A, B. Configurations of helical and three-dimensional coil.
A. GDCu standard (Boston Scientific Corporation, Natick, MA, USA).
B. GDCu 3-Dimensional (3D) Shape (Boston Scientific Corporation, Natick, MA, USA).
DOUBLE CATHETER METHOD

Following the use of double catheters for the wide-necked intracranial aneurysm embolization by Baxter et al. (15), various authors have reported using technically modified double catheter method (16-21). One concern with placing coils in wide-neck aneurysms is that, even if the initial coil can be placed to achieve a basket, subsequent coils may displace the detached initial coil through the wide-neck into the parent vessel. A solution to this problem is to place two coils into the aneurysm prior to detaching either coil. The key concept of this technique is that coils simultaneously into the aneurysm would cause the coils to intermingle with each with the other and remain within the aneurysm (Fig. 2).

Technical benefit of this method is that first coil remains retrievable if the second coil should displace the first. Additionally, the bracing characteristic of two coils results in a more stable mesh configuration prior to placement of additional coils.

The neurointerventionist should consider the following issues when using double catheter method:

1. Guiding Catheter

 The internal diameter of 6Fr guiding catheter is enough to pass the two 0.010 inch microcatheters. If two guiding catheters are being used, placement of one catheter in the internal carotid artery and the other in the common carotid artery should be considered.

2. Microcatheters

 In practice, it is important to distinguish between the two microcatheters in fluoroscopic views during the
procedures. Therefore, a use of microcatheters with different-shaped distal markers can help to distinguish each other.

The aneurysm is sequentially catheterized with two microcatheters. In general, the aneurysm sac was divided into two imaginary parts, and each part was occupied by the first and second coils. These imaginary parts need not be half of the aneurysm. According to the shape of the aneurysm, two imaginary parts can be divided into the inflow and outflow zone, or the superficial and deep part, or each different sac in multilobulated aneurysm (Fig. 3). This compartmentalization is effective in filling stage as well as framing stage.

3. Coils

Coil size (diameter) is selected according to the sizes of these imaginary parts. The use of two 3D or complex shaped coils at the start of the procedure has the greatest likelihood of forming a stable mass that resists herniation into the parent vessels during subsequent coil packing. Coils are introduced into the aneurysm using either simultaneous insertion through each catheter or sequential insertion through each catheter.

4. Coil Detachment

The coils are manipulated until they are presumed to be stable within the aneurysm lumen. One coil is released and the other is kept tethered to its introducer. More stable-looking coil should be detached first. Sometimes, however, the more stable-looking coil was not detached first, especially when it formed a stable

Fig. 3. Imaginary compartmentalization of aneurysms for double catheter methods.
A. The inflow and outflow zone.
B. Superficial and deep part.
C. Multilobulated aneurysm.

Fig. 4. A 63-year-old woman with subarachnoid hemorrhage.
A. Lateral projection of left carotid angiogram shows posterior communicating artery aneurysm with wide-neck.
B. Two microcatheters (arrows) are placed within aneurysm lumen, and two coils are deployed simultaneously for intermingling of coils.
C. Final angiogram shows obliteration of aneurysm with small residual neck.
large frame that prevented excessive movement of the second small coil, which is remained within this frame. Additional coils are then introduced through the available microcatheter until it is felt that the entire mass is stable.

If you are worry about subsequent movement of the coil mass out of the aneurysm during later coil placement, should release the more superficial coil first and leave the deeper coil attached until the end of the procedure. The increase of the volume in deep deposition of coils in this wide-necked aneurysm has the risk of pushing more superficially place coils out of the aneurysm and into the parent vessel (18). When there is any evidence of the superficial coil frame changing shape or of parent artery protrusion, the superficial framing coils should not detach prior to obtaining satisfactory aneurysm packing through the deeper positioned microcatheter (19).

In some cases, two coils may be insufficient for making a stable initial coil frame. For these aneurysms, the placement of third or fourth microcatheters within aneurismal sacs can make stable initial coil frames by intermingling three or four coils (16).

Double catheter method is potentially more versatile, theoretically allowing treatment of aneurysms not amenable to balloon remodeling or stent placement. This method is simpler than method using balloon or stent, and does not need to use guiding system with the larger diameter, and the cost is lower than the neck remodeling technique with balloon or stent. Therefore, this method is worth trying the first method for aneurysm with unfavorable configuration before the use of the balloon or stent (Fig. 4). Additionally, this method is associated with a relatively low risk of thromboembolic complications in comparison to those of balloons or stents. Therefore, there is no need to

![Image of coils and microcatheters](image_url)

Fig. 5. A 60-year-old man presented with diplopia.
A. AP projection of right vertebral artery angiogram shows an aneurysm on left superior cerebellar artery (SCA) origin. Dome to neck ratio of this aneurysm was under 1.4, and incorporated left SCA has acute angle with the aneurysm neck.
B. The first microcatheter was placed across the neck of aneurysm. The tip of microcatheter is marked by arrow.
C. The second microcatheter was placed within aneurysm fundus, and a coil is deployed within the fundus.
D. Final left vertebral artery angiogram shows satisfactory occlusion of the aneurysmal sac without the compromise of the left SCA.
medicate antiplatelet agents (17).

There may be several potential complications associated with multiple microcatheters including thromboembolism, coil stretching, coil breakage or coil interlocking during the coil manipulation. There is a solution when coil interlocking or stretching occurs: withdrawal of coils and microcatheters together. Because no coil is detached until a stable initial coil frame is made, all coils and microcatheters can be easily retrieved together, and because a single guiding catheter is inserted, removal of the whole devices is safe as well as easy.

Kwon et al. (17) presented that the double catheter technique was feasible and safe for embolization of aneurysms with unfavorable configurations, even though the limitation of this study was its small number of patients.

CATHETER-ASSISTED METHOD

A catheter-assisted technique is used when a balloon or a stent cannot be inserted into the incorporated branch because of its small size and/or acute angulations to the parent artery (22–24). Because the balloon and catheter delivery catheter are stiffer than the catheter for coil delivery, these may not be amenable to enter the incorporated vessel with acute angle or to pass through the tortuous proximal conducting vessels. Key concept of this technique is one microcatheter is inserted into the incorporated branch for protection, and the tip of the other catheters is positioned into the aneurysm lumen for coil deployment (Fig. 5). This technique is also viable alternative for management of aneurysms with unfavorable wide-neck (22).

The catheter-assisted neck protection method is technically very simple. The first microcatheter for coil deployment is placed in the sac of the aneurysm. The second catheter is inserted into the incorporated branch for protection or positioned across the orifice of the aneurysm to prevent coil herniation into the parent vessel.

This technique allows free control of the microcatheter, making the irregular shape of the coil basket appropriate for preserving the incorporated branch by controlling the tension of the catheter inserted into the incorporated branch, and pushing the coil basket away from the origin of the incorporated branch during the coil deployment.

In wide-neck aneurysm, the protecting catheter should be adhered to aneurysm neck and press against coil loops. Therefore, the aneurysm neck that opens to outer curve side of the parent artery or branching artery having acute angle with parent artery is the morphologic requisite to guarantee the success of the catheter-assisted method. Aneurysm arising from paraclinoid carotid artery or basilar top usually has favorable geometry.

The technique of catheter-assisted method has several
advantages over the balloon or stent-assisted techniques. First, this method is technically easy and no additional femoral puncture is required, and one 6F guiding catheter is used as is conventional. Second, if the parent arterial flow is hindered by the herniated coil mesh, an immediate thrombolysis can be performed via the positioned microcatheter, because a microcatheter was readily available for navigating in a small and tortuous artery. Third, According to the situation, this method can easily change to double catheter method. However, microcatheter only is insufficient to protect the aneurysm neck, the combination with 3D framing coils or with double catheter technique may increase the chance of the successful procedure (Fig. 6).

COIL-ASSISTED METHOD

Only 2 cases about the coil assisted method were officially reported (17, 23). Coil and catheter-assisted method is the modified technique of the catheter-assisted method. To protect incorporated branch from the fundus of the aneurysm, a coil is deployed first through one microcatheter near the origin of the incorporated vessel, and this coil interfere with movement of the second coil toward incorporated branch. After a stable coil frame has been formed without compromise of the incorporated branch by the second and subsequent coils, the first coil is retrieved and reinserted into the stable coil mass for sac filling.

This method can apply the case that protecting microcatheter cannot advance into the incorporated vessel. However, this method has the risk of the unexpected coil interlocking or thromboembolism.

CONCLUSION

3D coils and various techniques using microcatheters are practically useful to manage the wide-neck aneurysms. So unlike balloon remodeling technique or stent deployment, these techniques do not lead to the flow arrest of parent artery or in-stent thrombosis, avoiding the use of antiplatelet therapy. 3D coils, double catheter and catheter-assisted methods should be considered as a viable alternative for management of aneurysms with unfavorable wide-neck or dome to neck ratios. However, these methods do not offer protection against the coil protrusion through the neck. Therefore, we should make the strategy for endovascular treatment of the wide-neck aneurysm carefully, in considering aneurysm configuration, relationship between the aneurysm and parent artery, the presence of incorporated branch, proximal approach route, technical availability, the risk of thromboembolic complications, and antiplatelet therapy.

References

13. Higashida RT, Cognard C, Bracard S. Initial clinical experience with a new complex-shaped detachable platinum coil system for Endovascular Management of the Wide-neck Aneurysms

Key Words: Aneurysm; Endovascular therapy; Microcatheter; Coil