Identification of *Erysipelothrix rhusiopathiae* by DNA Sequencing in a Culture-Negative Intra-Abdominal Abscess

Hee Jae Huh¹, Hyun-Young Kim¹, Young Eun Ha², Chang-Seok Ki¹, Nam Yong Lee¹

¹Department of Laboratory Medicine & Genetics, ²Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

Erysipelothrix rhusiopathiae is a Gram-positive bacillus that causes infections primarily in animals. In humans, the bacteria usually cause localized or generalized cutaneous infections. A 75-year-old man with chronic alcoholism presented with abdominal pain. Abdominal computed tomography and laboratory findings suggested an intra-abdominal abscess in the periaortic soft tissue. While no definitive infectious source was identified, *E. rhusiopathiae* was identified by 16S rRNA-based gene sequencing from culture-negative, periaortic necrotic tissue, subsequent to empiric antibiotic treatment. It is suggested that *E. rhusiopathiae* has the potential to cause intra-abdominal abscesses. This case report highlights the usefulness of DNA sequencing to identify pathogens in patients pretreated with antibiotics. *(Ann Clin Microbiol 2014;17:132-135)*

Key Words: Abscess, *Erysipelothrix rhusiopathiae*, Sequencing, 16S rRNA

INTRODUCTION

Erysipelothrix rhusiopathiae is a pleomorphic, Gram-positive, non-sporulating bacillus that has a worldwide distribution. It has been seen primarily as a veterinary pathogen [1,2], normally infecting animals, birds, and fish [2]. In humans, it usually causes occupational diseases in people exposed to infected animals [1,3]. Three well-defined clinical categories of human disease have been described: erysipeloid, generalized cutaneous form, and bacteremia, which is often associated with endocarditis [4]. In addition, new disease manifestations, such as septic arthritis, meningitis, pneumonia, and intra-abdominal abscess, have been reported [5-9].

Herein, we report a case of intra-abdominal abscess and identification of *E. rhusiopathiae* by 16S rRNA-based gene sequencing from culture-negative, periaortic necrotic tissue, suggesting the potential of the bacterium to cause intra-abdominal abscess.

CASE REPORT

A 75-year-old man was admitted to the hospital with 2 weeks of abdominal pain. His past medical history included hypertension, benign prostatic hypertrophy, and chronic alcoholism. There was no history of occupational exposure to live animals; however, he frequently consumed raw fish. There was no fever, and the abdomen was tender with no palpable masses. Blood tests showed an elevated leukocyte count of 11,180/mm³ with 77% neutrophils, an elevated C-reactive protein (CRP) level of 16.49 mg/dL (reference interval, 0-0.3 mg/dL), and an elevated erythrocyte sedimentation rate of 87 mm/hr (reference interval, 0-27 mm/hr). Computed tomography (CT) showed segmental periaortic soft tissue infiltration and ischemic soft tissue lesions (Fig. 1). Empiric antibiotic treatment with intravenous ceftriaxone and metronidazole was initiated. While no definitive infection source was identified from blood and urine cultures and other microbiological workup for tuberculosis, syphilis, brucellosis, and Q fever, he developed an intermittent fever on hospital day 2. The antibiotic treatment was changed to intravenous ampicillin/sulbactam on hospital day 4, however, the fever continued. On hospital day 10, surgical excision of the periaortic abscess was performed. Intra-operatively, a sample of ab-
Abdominal computed tomography scan showing soft tissue infiltration and ischemic lesions around the aorta (arrow).

Table 1. Primers used in this study for a semi-nested PCR for bacterial 16S rRNA gene

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5’-3’)</th>
<th>Position*</th>
<th>Length (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First PCR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1F</td>
<td>AGAGTTTGATCCTGGCTCAG</td>
<td>1-20</td>
<td>20</td>
</tr>
<tr>
<td>1R</td>
<td>CCGTCAATTCCCTTTGAGTTT</td>
<td>897-916</td>
<td>20</td>
</tr>
<tr>
<td>Product</td>
<td>1-916</td>
<td>916</td>
<td></td>
</tr>
<tr>
<td>Second PCR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1F</td>
<td>AGAGTTTGATCCTGGCTCAG</td>
<td>1-20</td>
<td>20</td>
</tr>
<tr>
<td>2R</td>
<td>GGCGTGGACTACTAGGGTATCT</td>
<td>787-808</td>
<td>22</td>
</tr>
<tr>
<td>Product</td>
<td>1-808</td>
<td>808</td>
<td></td>
</tr>
</tbody>
</table>

*GenBank accession No. AB055905.

DISCUSSION

We have described a case of molecular identification of *E. rhusiopathiae* from culture-negative, periaortic necrotic tissue. There was no involvement of the endocardium, which frequently occurs in invasive *Erysipelothrix* infections, in this case. The invasive form associated with localized infection due to this pathogen is extremely rare. Previous reports of invasive infection in humans have described the following sterile sites: endocardium, bone, joint, and cerebrospinal fluid [5-7]. To the best of our knowledge, only one case of an intra-abdominal abscess due to *E. rhusiopathiae* has been reported [9].

Since the inception of broad-range PCR in the late 1980s, many clinical microbiology laboratories have implemented this technique. Sequence-based typing using broad-range PCR offers two potential benefits: it can often identify pathogens when patients were pretreated with antibiotics, and it can detect culture-resistant, fastidious, damaged, and slow-growing microorganisms [10-12]. In the present case, the pathogen was identified by nucleotide sequence analysis of the 16S rRNA gene from a surgical specimen of the abscess; however, the culture result was negative. Although it might be overlooked due to its slow growth rate and small colony size, antibacterial therapy was started 10 days before specimen collection, which may have caused the negative culture result despite bacterial infection.

Since there are no reliable serologic tests for the diagnosis of *Erysipelothrix* infection in humans, the molecular diagnostic assay is important, especially in culture-negative cases. The case reported here demonstrates the diagnostic value of amplification and nucleotide sequence analysis in *Erysipelothrix* infection. Rampini et al. [13] emphasized that amplification and nucleotide sequence analysis from primary sterile body sites should be
performed for patients with a high clinical suspicion of infection and negative culture results. Additionally, they showed that 16S rRNA gene PCR is particularly useful for the identification of bacterial pathogens in patients taking antibiotics. Although direct amplification of rRNA genes from clinical specimens can be hobbled by the presence of contaminating DNA in PCR reagents, the use of negative control and double-strand specific DNase pretreatment on PCR reagents can be used to resolve this limitation [10,13].

Most cases of Erysipelothrix infection occur after occupational exposure to animals (i.e., butchers, fishermen, fish handlers, veterinarians, housewives, etc.) [1,3,4]. E. rhusiopathiae can enter the human body by penetration into the skin or through the gastro-intestinal system by ingestion of contaminated food products [3]. Cases of infection that do not have an occupational link have occurred mainly in immunocompromised hosts, and chronic alcohol ingestion is accepted as the most common underlying medical condition in systemic infection [4,6,14]. Although our patient denied occupational exposure or history of contact with animals, he was a chronic alcoholic and frequently consumed raw fish.

Susceptibility data for E. rhusiopathiae are limited; however, most strains are highly susceptible to penicillins, cephalosporins, imipenem, clindamycin, and ciprofloxacin, whereas they are resistant to vancomycin, sulfonamides, trimethoprim-sulfamethoxazole, teicoplanin, and aminoglycosides [4,15]. The patient’s improvement in this case suggests that intravenous ampicillin/sulbactam and an oral combination of amoxicillin/clavulanate and moxifloxacin were effective.

In conclusion, we identified E. rhusiopathiae by 16S rRNA-based gene sequencing from culture-negative necrotic tissue in a patient with an intra-abdominal abscess. Although E. rhusiopathiae infection is rare, we should consider it to be one of the possible causes of intra-abdominal abscesses. This case report highlights the usefulness of the 16S rRNA gene sequencing method to identify pathogens in patients pretreated with antibiotics.

REFERENCES

배양 음성인 복강내 농양에서 16S rRNA 염기서열분석으로 동정된 Erysipelothrix rhusiopathiae 1예

성균관대학교 의과대학 삼성서울병원 1진단검사의학교실, 2감염내과학교실
허희재1, 김현영1, 하영은2, 기창석1, 이남용1

교신저자 : 이남용, 135-710, 서울시 강남구 일원동 50번지
성균관대학교 의과대학 삼성서울병원 진단검사의학교실
Tel: 02-3410-2706, Fax: 02-3410-2719
E-mail: micro.lee@samsung.com