Abstract

Changes in Cytosolic Ca$^{2+}$ Concentration of Single Rabbit Coronary Artery Smooth Muscle Cell During Ischemic Cardioplegic Period

Young-Ho Lee, Ph.D., Gyu-Bog Choi, M.D.,*
Soon-Tae Kim, Ph.D.,** Bok-Soon Kang, M.D.

Department of Physiology, College of Medicine, Yonsei University, Seoul, Korea
Department of Internal Medicine, College of Medicine, Ewha Woman University, Seoul, Korea*
Kyung Buk Veterinary Laboratory Service**

Background: No-reflow is a specific type of vascular damage occurring when removal of coronary occlusion does not lead to restoration of coronary flow. There are three major explanations for the no-reflow phenomenon such as endothelial cell edema, microvascular plugging by platelets or thrombi and coronary occlusion by ischemic contracture of the myocardium. But detailed mechanisms of no-reflow phenomenon are not known. The objects of this study are to elucidate the possibility whether elevation of cytosolic Ca$^{2+}$ concentration during ischemic cardioplegic period is mechanism of no-reflow phenomenon or not.

Methods: Changes in cytosolic Ca$^{2+}$ concentration were measured under varying experimental condition. Free [Ca$^{2+}$] in the cytosole ([Ca$^{2+}$]) of single rabbit coronary artery cells was measured with fluorescent Ca$^{2+}$ indicator, Fura-2.

Results: Resting [Ca$^{2+}$] was 134.2±34 nM (n=43). When single cells were perfused with cardioplegic or ischemic cardioplegic solution, [Ca$^{2+}$] was significantly increased and the degree of [Ca$^{2+}$], elevation was further augmented by ischemic cardioplegic solution. Pretreatment of sarcoplasmic reticulum emptying agent (20mM caffeine) had no effect on cardioplegia-induced [Ca$^{2+}$], change, but application of Ca$^{2+}$ channel blocker (5×10$^{-7}$M nifedipine) or an antagonist of Na$^{+}$/Ca$^{2+}$ exchange (5mM Ni$^{2+}$) partially (nifedipine) or completely (nickel) inhibited the [Ca$^{2+}$], elevation. Pretreatment of caffeine had no effect on ischemic cardioplegia-induced [Ca$^{2+}$], change, but application of nifedipine or nickel partially inhibited the [Ca$^{2+}$], elevation. Magnitude of ischemic cardioplegia-induced [Ca$^{2+}$], elevation was dependent on the Ca$^{2+}$ concentration of perfusate from 0 to 2.5mM. When Ni$^{2+}$ was added to reperfusion solution, recovery of ischemic cardioplegia-induced [Ca$^{2+}$], elevation was very rapid

서론

개심술 시행을 위한 심근경색(cardiac arrest) 또는 국소적인 허혈손상 후 경상혈액으로 재관류시 myocardial stunning\(^{13}\), 심근세포내로의 Ca\(^{2+}\) 쭉추\(^{13,19}\), 심실부정맥\(^{4}\), 현란손상 및 "no-reflow" 현상\(^{5}\) 등과 같은 가역적 또는 비가역적인 손상이 초래되는데 이를 재관류 손상(reperfusion injury)이라고 한다. 이러한 재관류 손상은 심근경색시 유발되는 허혈시간 동안 심근보호가 부적절하였을 때에만 나타나기 때문에 재관류 손상과 동시에 허혈 손상(ischemic injury)을 최소화 하기 위한 많은 연구가 이루어지고 있다.

허혈 손상은 정상적인 상태에서 심근세포가 에너지원인 adenosine triphosphate(ATP)의 생산을 glucose와 fatty acid의 aerobic oxidation에 의존하던 것이 심근세포가 허혈 상태에 빠졌을 때는 anaerobic glycolysis에 의존함으로서 발생되는 것이다\(^{6}\). 즉 허혈시 anaerobic glycolysis의 최종산물인 NADH, hydrogen ion 및 lactate가 쭉추되어 세포내 acidosis가 초래됨으로서 anaerobic glycolysis가 유발되고\(^{7}\) 동시에 심근의 아미노산 빕질이 변화되어 조직의 gluta mate과 aspartate와의 함량이 감소됨으로서 허혈 기간동안 더욱 ATP 생산이 감소된다고 알려있다\(^{8,9}\).

한편 허혈 손상의 기전으로서는 허혈 기간동안 세포내 ATP 함량의 감소로 인해 세포의 융적을 조절하는 과정(Na\(^+\) - K\(^+\) pump)이 억제됨으로서, Ca\(^{2+}\)에 대한 세포막 투과도의 증가 및 세포내 Ca\(^{2+}\) 저장소(sarcoplasmic reticulum : SR)내로의 Ca\(^{2+}\)의 이동이 억제되므로 세포내 Ca\(^{2+}\)의 농도가 증가되어 myofibrillar contraction와 같은 허혈 손상이 초래된다고 알려졌다\(^{10}\). 그리고 허혈 기간동안 세포내 Ca\(^{2+}\)의 쭉추가 재관류 때 동반되는 세포내 Ca\(^{2+}\)의 쭉추로 인하여 재관류 손상을 더욱 가중시킬 수 있다. 따라서 많은 연구자들이 허혈 손상의 기전을 토대로 재관류 손상을 최소화 하기 위해 많은 시도를 시행하였다. 즉 심근경색 기간동안 동반되는 허혈시 재관류시 Ca\(^{2+}\)이 쭉추되므로 재관류 용액의 조성 중 Ca\(^{2+}\)의 농도를 감소시키거나\(^{11}\). 허혈 기간동안 세포내 pH가 감소되므로 재관류 용액의 pH를 증가시키거나\(^{12,13}\). 허혈 기간동안 ATP가 고갈되므로 심근경색시 용액을 감소시키(hypothermic cardioplegia) ATP 고갈을 방지하므로\(^{14}\) 재관류 손상을 감소시킬 수 있다는 것이 보고되었다.

한편 상기의 허혈 손상이나 재관류 손상의 원인 규명 및 이를 최소화 할 수 있는 방법들이 거의 심근세포에 국한되어 시행되어 왔으나, 심장혈액으로 재관류시 심근세포의 직접적인 손상이외에 허혈시 재관류 후 관상 동맥에서도 "no-reflow" 현상과 같은 비가역적인 허혈-재관류 손상이 관찰되어졌었다\(^{15}\). "No-reflow" 현상은 coronary occlusion후 재관류시 관상동맥을 통한 혈류가 차단되는 현란손상으로써 이는 현란 손상에 의해 유발되는 내피세포의 edema가 혈류를 차단하거나\(^{16}\) 혈관이나 thrombi에 의한 혈류의 차단\(^{16,17}\) 또는 심근세포의 ischemic contracture가 관상동맥을 압박하는 정상적인 혈류를 차단하여\(^{18}\) 알아내는 것으로 알려져 있으나 아직까지 그 기전은 명확하게 밝혀져 있지 않다. 또한 관상 혈류량 조절에 중요한 역할을 하고 있는 관상동맥 평활근 세포의 수축동도가 이같은 "no-reflow" 현상에 미치는 효과에 대해서도 아직 규명되지 못하였다. 한편 "no-reflow" 현상과는 달리 허혈 상태 후 재관류시 혈관 기능의 손상, 혈관벽을 통한 투과도의 변화\(^{19,20}\) 및 "low-reflow" 현상\(^{1,19}\)과 같은 여러가지 가역적인 기능 손상(micro- & macrovascular stunning)이 초래된다는 이의 기전은 전히 알려지지 않고 있다. 그러나 심근세포의 경우와 같이 관상동맥 평활근 세포내 Ca\(^{2+}\)의 쭉추가 관상동맥 손상의 기전중의 하나로 작용할 것이라는 것을 배제할 수는 없다.

최근에 fluorescence Ca\(^{2+}\) indicator인 Fura-2를 이
용하여 세포내 Ca\(^{2+}\)의 농도를 비교적 쉽게 정확하게 측정할 수 있는 방법이 개발되었는데 이러한 방법을 이용하면 안정시 세포내 Ca\(^{2+}\)의 농도 뿐만 아니라 응시적인 Ca\(^{2+}\)의 증가 또한 측정할 수가 있다.

따라서 본 실험에서는 가토관상동맥으로부터 분리한 단일 폐혈관 세포를 심근경지 유도액으로 관류하면서 혈류 상태를 유발하였을 때, Fura-2를 사용하여 폐혈관 세포 내 유리 Ca\(^{2+}\) 농도 변화양상을 측정함으로써 폐혈관 세포의 수축이 "no-reflow" 현상의 기전의 하나로 작용할 수 있는지를 규명하고자 하였다.

방 법

1. 단일 폐혈관 세포의 제작
가토관상동맥을 호소처리한 후 단일 폐혈관 세포를 얻는 방법은 다음과 같다. 총 2.0~2.5kg의 토끼 개정맥 (ear vein)에 pentobarbital sodium (60mg/kg)과 heparin (2,000IU/kg)을 주입하여 마취시킨 후, 정맥을 절단하여 실험시 두 날을 적작하였다. 적절한 심박을 100% O\(_2\)로 포화시키는 정상 Tyrode용액에 담근 상태에서 주위의 심근 조직이 불어 있는 상태로 관상동맥을 분리한 후 preparation chamber에 뻗어 고정시켰다. 혈액경사에서 관상동맥 주위의 심근 및 결제조직을 안고용 마세가미 및 펜셋을 이용하여 조심스럽게 제거하였다.
결제조직을 제거한 관상동맥을 휘로 걸게 결제하여 내피면을 노출시킨 후 이를 37°C의 Ca\(^{2+}\)-free Tyrode용액(정상 Tyrode용액에서 Ca\(^{2+}\)을 제거한 용액)에 5분간 배양하여 세포외의 Ca\(^{2+}\)을 섞어주었다. 배양액은 0.01% papain 및 0.05% dithiothreitol로 첨가한 Ca\(^{2+}\)-free Tyrode용액으로 교환하여 다시 5분간 배양한 후 albumin을 첨가한 Ca\(^{2+}\)-free Tyrode용액으로 혈관 젤편을 세척해 주었다. 이후 배양액을 0.1% collagensenase (Wako사 제품, Osaka, Japan)가 포함된 Ca\(^{2+}\)-free Tyrode 용액으로 교환하여 다시 30분간 배양한 후, 혈관 젤편을 collagensenase가 없는 Ca\(^{2+}\)-free Tyrode용액으로 옮겨 혈관 젤편의 외면에 묻어 있는 여분의 collagensenase를 제거한 후 가스다공 유리대통을 이용하여 혈관 젤편을 놓어 주었다. 충분한 양의 단일 폐혈관 세포가 얻어진 후 용액내에 1% albumin (Sigma사 제품, Missouri, USA)을 첨가하여 4°C 이하에서 1시간 이상 보관한 후 1mM Ca\(^{2+}\)을 첨가한 Tyrode용액에 부유시켜 실험에 사용하였다.

2. 폐혈관 세포내 유리 Ca\(^{2+}\) 농도의 측정
1) 폐혈관 세포내 Fura-2 측정방법
단일 폐혈관 세포내 유리 Ca\(^{2+}\) 농도 측정을 위해서 fluorescence Ca\(^{2+}\) indicator인 Fura-2를 사용하였는데, 이를 폐혈관 세포내에 축적시키는 방법은 다음과 같다. 5μM Fura-2/AM (acetoxyethyl) ester form (Molecular Probe사 제품, Oregon, USA)을 첨가한 정상 Tyrode용액에 첨가한 폐혈관 세포를 cell density가 3×10\(^5\)/ml 정도 되게 부유시킨 후 37°C에서 약 60분간 배양하여 세포내에 Fura-2가 축적되도록 하였다. 세포 내 Fura-2를 축적시킨 후 이를 원심분리하여 상층액을 제거한 다음 폐혈관 세포를 다시 정상 Tyrode용액으로 세척하여 외부의 Fura-2를 세척하였다. 이후 폐혈관 세포내의 정상 Tyrode용액에 부유시켜 4°C에서 보관하면서 실험에 사용하였고 Fura-2/AM을 축적시킨 후 6시간 이내에 실험을 실시하였다.

2) 폐혈관 세포내 유리 Ca\(^{2+}\) 농도의 측정방법
폐혈관 세포내 유리 Ca\(^{2+}\) 농도는 SPEX IM spectrofluorescence imaging system(Spex사 제품, New Jersey, USA, Model: AR-CM-COMM)을 이용하여 Fura-2 fluorescence intensity를 측정하여 산출하였다(Fig. 1). 즉 inverted microscope(Nikon사 제품, Tokyo, Japan)에 설치한 recording chamber에 Fura-2를 축적시킨 폐혈관 세포를 밀어드린 chamber 바닥에 고정시킨 후, peristaltic pump을 이용하여 정상 Kreb's Henseleit(KH) 용액을 관류시키면서(3ml/min) 실험을 시행하였다. Fura-2를 축적시킨 폐혈관 세포를 340nm 및 380nm 정점의 excitation ultraviolet(UV) light로 각각 변가 조사시켰을 때 발생하는 fluorescence signal을 510nm emission filter를 통해 SPEX IM spectrofluorescence imaging system으로 측정하였다. 이때 Fura-2 - Ca\(^{2+}\) fluorescence는 340nm의 UV light에 의해, 그리고 Fura-2 fluorescence는 380nm의 UV light에 의해 각각의 값이 최대로 나타내게 된다. 이후 이들의 fluorescence intensity ratio(R=F340/F380)을 구하여 세포내 유리 Ca\(^{2+}\) 농도의 아래의 식에 따라 산출하였다.

\[
(Ca^{2+}) = K_d \times \beta \times ((R - R_{min})/(R_{max} - R))
\]
Fig. 1. 단일 평활근 세포내 유리 Ca2+ 농도 측정장치의 모식도. 본 실험에서 사용한 SPEX epifluorescence optical system의 모식도를 나타낸 것이다. 150W xenon arc lamp에서 발생된 UV light는 50% neutral density filter와 heat absorbing filter를 통과하여 rotating filter wheel에 도달하게 된다. UV light는 100Hz의 속도로 회전하여 있는 rotating filter wheel을 통해 340nm 및 380nm의 excitation UV light가 교대로 통과하게 된다. Rotating filter wheel을 통과한 두 개의 excitation light는 optic fiber를 통해 inverted microscope에 전달되게 된다. Microscope에 전달된 excitation light는 dichroic mirror(430nm)에 반사된 후 FLUOR objective lens를 통해 측정하고자 하는 단일 평활근 세포에 도달하게 된다. Excitation light의 조사에 의해 평활근 세포로 부터 생성된 fluorescence signal은 microscope의 side port에 위치한 510nm emission filter를 통과한 후 photomultiplier tube를 통해 computer에 저장되도록 하였다.

\[K_d : \text{dissociation constant of Fura-2 for Ca}^{2+} \ (37\degree C = 224 \text{ nM}) \]

\[R : \text{fluorescence ratio at 340/380nm} \]

\[R_{\text{min}} : \text{values of } R \text{ for Fura-2 (free acid) in a glass chamber without Ca}^{2+} \]

\[R_{\text{max}} : \text{values of } R \text{ for Fura-2 in a glass chamber with saturated Ca}^{2+} \]

\[\beta : \text{ratio of the 380nm-fluorescence signals of Fura-2 without Ca}^{2+} \text{ and with saturated Ca}^{2+} \]

3. 관류액의 조성

단일 평활근 세포의 분리 및 Fura-2 측정에 사용한 장상 Tyrode 용액의 조성은 NaCl 140: KCl 5: MgCl\textsubscript{2} 1: CaCl\textsubscript{2} 1.0: NaH\textsubscript{2}PO\textsubscript{4} 0.3: HEPES 10: Glucose 5.5: mM pH 7.4 이었다. 심근경지 기간 동안 사용한 관류액(심근경지 용액: St Thomas Hospital Solution)의 조성은 NaCl 110: KCl 20: MgCl\textsubscript{2} 16: CaCl\textsubscript{2} 1.0: NaHCO\textsubscript{3} 10: Glucose 5.5: mM pH 7.4 이었다. 혈청성 심근경지 용액은 심근경지 용액의 조성과 glucose를 제외하였고 혼합기체(95% O\textsubscript{2}+5% CO\textsubscript{2}) 대신 100% N\textsubscript{2} 기체로 포화시켰으며 실험 chamber의 용액이 완전히 차단되고 있었다. 사용한 용액의 조성은 배분 전을 배분 후 Fig 설명에 기술하였다. 한편 실험 전기 시간에 걸쳐 용액의 온도는 37\degree C로 일정하게 유지하였다.

4. 세포내 유리 Ca2+ 농도의 계산 및 Fura-2 분포구의 측정

평활근 세포에서 측정한 fluorescence intenstity를 세포내 유리 Ca2+ 농도로 환산하기 위해 외부관류액의 Ca2+ 농도를 변화시켜 가면서 Fura-2 fluorescence intensity ratio의 최대치(\(R_{\text{max}}\)) 및 최소치(\(R_{\text{min}}\))를 각각 구한 후, 이를 이용하여 Fura-2 fluorescence in-
세포내 여러 기관에도 축적될 수 있는데 (compartmentalization) 이 같은 compartmentalization이 발생할 경우 정확한 세포질 내 유리 Ca^{2+} 농도의 측정이 매우 어렵게 된다. 따라서 본 실험에서도 Fura-2를 페닐렌 세포에 축적시킬 때 Fura-2의 compartmentalization이 초래되는지를 Frampton 등 (1985)의 방법에 준해 12 μM digitonin과 5% Triton X-100를 사용하여 확인하였다.

5. 자료분석 및 통계처리

심근전지 기간중에 세포내 유리 Ca^{2+} 농도 변화는 \(\Delta (Ca^{2+}) = \text{peak}(Ca^{2+}) - \text{resting}(Ca^{2+}) \)으로 산출하여 평균±표준오차로 나타냈다. 대조군과 약물투여군간의 차이는 unpaired t-test로 유의성을 검정하여 p-value가 0.05 이하인 경우 유의한 것으로 간주하였다.

결 과

1. 심근전지 또는 혈행성 심근전지 기간중 세포 내 유리 Ca^{2+} 농도의 변화

페닐렌 세포를 심장적으로 개시술 시험을 위한 심근전지 및 세관류시 유사한 상황에 노출시키기 위해 심근 경지 용액과 혈행성 심근전지 용액으로 페닐렌 세포를 관찰한 후, 세포내 유리 Ca^{2+} 농도 변화를 관찰하였다. 본 결과는 Fig. 3에 나타낸 바와 같다. 먼저 혼합기체 (95% O_{2} + 5% CO_{2})로 포화시간 경상 KH용액으로 페닐렌 세포를 관찰하였고 전 환마는 양상시 페닐렌 세포 내 유리 Ca^{2+} 농도는 134.2±34.0 mM (n=43)이었다. 이후 혼합기체를 심근전지 용액으로 바꾸어 페닐렌 세포를 관찰하였을 때 관찰 30분 후 세포내 유리 Ca^{2+} 농도는 양상시에 비해 현저히 증가되었다 (\(\Delta (Ca^{2+}) = 142.5 \pm 7.5 \) mM, n=5 : Fig. 3C). 이 때 세포내 유리 Ca^{2+} 농도의 변화 양상은 관찰 10분까지는 세포내 유리 Ca^{2+} 농도가 거의 변화되지 않았으나, 관찰 10분부터 서서히 증가하여 관찰 30분에는 세포내 유리 Ca^{2+} 농도가 대조군에 비해 의의있게 증가되었으며, 관찰 후 경상 KH용액으로 세척시 2~3분경에 안정시 유리 Ca^{2+} 농도는 관찰 후 30분경에 안정시에 비해 의의있게 증가되었으며 (\(\Delta (Ca^{2+}) = 275.4 \pm 17.2 \) mM, n=12 : Fig. 3B와 C), 이러한
세포내 유리 Ca2+ 농도의 증가는 심근장기 용액으로 관리하였을 때에 비해 더욱 현저하였다.

또한 허혈성 심근장기 용액으로 평활근 세포를 관리시킨 관리시간에 따른 세포내 유리 Ca2+ 농도의 변화를 관찰하였던 바, 관리 10분경까지는 세포내 유리 Ca2+ 농도는 거의 증가되지 않았으나(Fig. 4A) 관리 30분경에는 세포내 유리 Ca2+ 농도가 현저히 증가된 후 정상 KH용액으로 세척시 10분이내에 안정시 유리 Ca2+ 농도로 회복되었고(Fig. 4B) 관리 60분경에는 세포내 유리 Ca2+ 농도가 관리 30분경 보다 더욱 더 증가되었으나 정상 KH용액으로 세척시에는 안정시 세포내 유리 Ca2+ 농도로 회복되지 않았다(Fig. 4C).

2. Caffeine, nifedipine 및 nickel이 심근장기시세포내 유리 Ca2+ 농도 변화에 미치는 영향

심근장기 용액으로 평활근 세포를 관리시킨 관리되는 평활근 세포내 유리 Ca2+ 농도 증가 현상의 기전을 규명하기 위하여 caffeine, nifedipine 및 nickel이 심근장기시세포내 유리 Ca2+ 농도 변화에 미치는 영향을 관찰하였다. 먼저 심근장기 용액으로 평활근 세포를 관리시킨 관리되는 세포내 유리 Ca2+ 농도 증가 현상이 SR로부터의 Ca2+ 유출에 기인하는 것인지를 확인하기 위하여 20mM caffeine을 반복 투여하여 SR배의 Ca2+을 고갈시킨 후. 관리액의 조성을 20mM caffeine이 포함된 심근장기용액으로 바꾸어 관리시키면서 평활근 세포내 유
Fig. 4. 평활근 세포를 허혈성 심근질지 용액으로 관류시 세포내 유리 Ca2+ 농도의 시간에 따른 변화. A : 평활근 세포를 허혈성 심근질지 용액 (CP+N2 : cardioplegic solution gassed with 100% N2)으로 10분간 관류시 세포내 유리 Ca2+ 농도의 변화. B : 평활근 세포를 허혈성 심근질지 용액으로 30분간 관류시 세포내 유리 Ca2+ 농도의 변화. C : 평활근 세포를 허혈성 심근질지 용액으로 60분간 관류시 세포내 유리 Ca2+ 농도의 변화. 그림의 ▲는 각각 5분동안 fluorescence의 측정을 중단한 것을 표시한 것임.

Fig. 4. 허혈성 심근질지 용액으로 관류시 세포내 유리 Ca2+ 농도의 변화를 관찰하였다. 즉 관류액을 정상 KH용액에서 20mM caffeine이 포함된 KH용액으로 바꾸어 관류시킨 경우 세포내 유리 Ca2+ 농도가 급격으로 증가하였다. 이는 케피인의 효소성과 관류액에 인한 유리 Ca2+ 농도의 증가가 관찰되지 않았다. 이후 관류액을 20mM caffeine이 함유된 심근질지 용액으로 바꾸어 관류시킨 후 30분경에 평활근 세포내 유리 Ca2+ 농도는 증가하는데 그 증가 정도는 대조군(Fig. 5A)과 거의 유사하였다(Fig. 5B).

심근질지 용액으로 평활근 세포를 관류시 관찰되는 세포내 유리 Ca2+ 농도 증가 현상은 고농도 K+으로 인한 Ca2+ channel 활성화에 의한 세포내로의 Ca2+ 유입에 기인하는 것인지를 규명하기 하였다. 즉 정상 KH용액으로 평활근 세포를 관류한 후 Ca2+ channel blocker인 nifedipine (5×10^{-7} M)이 함유된 심근질지 용액으로 관류액을 바꾸었을 때, 세포내 유리 Ca2+ 농도의 증가는 대조군(Fig. 5C)에 비해 다소 감소하였으나 완전히 억제되는 것은 없었다(Fig. 5D).

3. Caffeine, nifedipine 및 nickel이 허혈성 심근질지 세포내 유리 Ca2+ 농도 변화에 미치는 영향 허혈성 심근질지 용액으로 관류시 관류된 평활근 세포내 유리 Ca2+ 농도 증가 현상의 기인을 규명하기 위하여 caffeine, nifedipine 및 nickel이 허혈성 심근질지 세포내 유리 Ca2+ 농도 변화에 미치는 영향을 관찰하였다. 먼저 허혈성 심근질지 용액으로 관류시 관류된 세포내 유리 Ca2+ 농도 증가 현상이 SR로 부
Fig. 5. Caffeine, nifedipine 및 nickel이 심근정지시 세포내 유리 Ca^{2+} 농도 변화에 미치는 영향. A와 B : 평활근 세포를 심근정지 용액 (CP : cardioplegic solution, A)과 20mM caffeine (CAFF)를 두 번 연속 전처리 후 caffeine이 함유된 심근정지 용액 (CP + CAFF : cardioplegic solution with caffeine, B)으로 관류시 관찰되는 세포내 유리 Ca^{2+} 농도의 변화. C와 D : 평활근 세포를 심근정지 용액 (C과 5 × 10^{-3} M nifedipine (NIF)이 함유된 심근정지 용액 (CP + NIF : cardioplegic solution with nifedipine, D)으로 관류시 관찰되는 세포내 유리 Ca^{2+} 농도의 변화. E와 F : 평활근 세포를 심근정지 용액 (E과 5 mM nickel (Ni^{2+})이 함유된 심근정지 용액 (CP + Ni^{2+} : cardioplegic solution with nickel, F)으로 관류시 관찰되는 세포내 유리 Ca^{2+} 농도의 변화. 그림의 ▼ (또는 ▲)는 각각 10분, 20분, 5분 동안 fluorescence의 측정을 중단한 것임을 표시한 것임.

터의 Ca^{2+} 유리에 기인하는 것인지를 확인하기 위하여 실험한 결과는 Fig. 6에 나타낸 바와 같다. 평활근 세포를 20mM caffeine이 포함된 KH용액으로 2번 연속 관류시켜 SR내 Ca^{2+}를 고갈시킨 후 관류액을 20mM caffeine이 함유된 허혈성 심근정지 용액으로 바꾸었을 때 관류 30분경에 평활근 세포내 유리 Ca^{2+} 농도 증가 효과는 대조군 (Δ(Ca^{2+}) = 284.2 ± 16.4 nM, n = 6; Fig. 6A 와 C)과 거의 유사하게 나타났다 (Δ(Ca^{2+}) = 278.8 ± 18.2 nM, n = 6; Fig. 6B 와 C).

허혈성 심근정지 용액으로 평활근 세포를 관류시 관찰되는 세포내 유리 Ca^{2+} 농도 증가 현상이 고농도 K^{+}에 의한 Ca^{2+} channel 활성화에 의한 세포내로의 Ca^{2+} 유
Fig. 6. Caffeine 전 처리가 혈혈성 심근질지 세포내 유리 Ca^{2+} 농도 변화에 미치는 영향. A: 평활근 세포를 혈혈성 심근질지 용액(ÇP+N2 : cardioplegic solution gassed with 100% N2)으로 관류시 세포내 유리 Ca^{2+} 농도 변화. B: 평활근 세포를 20mM caffeine (CAFF) 두부 연속 전 처리 후 caffeine이 함유된 혈혈성 심근질지 용액(ÇP+N2+CAFF : cardioplegic solution containing caffeine gassed with 100% N2)으로 관류시 관찰되는 세포내 유리 Ca^{2+} 농도의 변화. C: 혈혈성 심근질지 용액과 caffeine이 함유된 혈혈성 심근질지 용액으로 관류시 증가된 세포내 유리 Ca^{2+} 농도, peak를 통계처리하여 평균±표준오차로 표시하였다. 그림의 ▼(또는 ▲)는 각각 10분, 10분, 5분 동안 fluorescence의 측정을 중단한 것을 표시한 것임.

임에 기인하는 것인지를 규명하고자 하였다. 정상 KH 용액으로 평활근 세포를 관류한 후 Ca^{2+} channel blocker인 nifedipine(5×10^{-7}M)이 함유된 혈혈성 심근질지 용액으로 관류하여 바꾸었을 때 세포내 유리 Ca^{2+} 농도의 증가 효과는 대조군 (Å(Ca^{2+})=299.3±21.9 nM, n=7: Fig. 7A와 C)에 비해 의의있게 감소되었으나 (Å(Ca^{2+})=201.7±13.1 nM, n=6: Fig. 7B와 C) 완전히 억제되지지는 않았다.

한편 혈혈성 심근질지 용액으로 평활근 세포를 관류시 관찰되는 세포내 유리 Ca^{2+} 농도 증가 현상이 Na^{+}-Ca^{2+} exchange를 통한 세포내로의 Ca^{2+} 유입에 기인하는 것인지를 알아보고자 하였다. 정상 KH용액으로 평활근 세포를 관류한 후 Na^{+}-Ca^{2+} exchange의 차단제로 알려진 5mM nickel이 함유된 혈혈성 심근질지 용액으로 평활근 세포를 관류시킨 경우 세포내 유리 Ca^{2+} 농도의 증가 효과는 대조군에 비해 현저히 감소되었으나 완전히 억제되지는 않았다 (대조군 △(Ca^{2+})=284.1±19.6 nM, n=9; nickel 처리군 △(Ca^{2+})=104.4±9.8 nM, n=9: Fig. 8).

4. 혈혈성 심근질지 용액 내 Ca^{2+} 농도 변화가 혈혈성 심근질지 세포내 유리 Ca^{2+} 농도 변화에 미치는 영향

Ca^{2+} 농도가 다른 혈혈성 심근질지 용액으로 평활근 세포를 관류시킨 경우 관찰되는 세포내 유리 Ca^{2+} 농도의 변화를 관찰하였다. 혈혈성 심근질지 용액내 Ca^{2+} 농도를 0 mM에서 2.5 mM 까지 단계적으로 증가시킴에 따라 관류 30분경 평활근 세포내 유리 Ca^{2+} 농도 역시 그에 비례하여 증가하는 것을 관찰할 수 있었다. 즉 Ca^{2+}
이 제거된 허혈성 심근경색 용액 (Fig. 9A)과 0.5mM Ca²⁺이 함유된 허혈성 심근경색 용액의 경우 (Fig. 9B) 관류 30분경 세포내 유리 Ca²⁺ 늑도는 거의 증가되지 않았으나 정상 KH용액으로 세척시 Ca²⁺이 제거된 허혈성 심근경색 용액의 경우 세포내 유리 Ca²⁺ 늑도가 다소 증가량을 관찰할 수 있었다. 또한 1.0mM Ca⁺⁺(Fig. 9C)과 2.5mM Ca⁺⁺ 이 함유된 허혈성 심근경색 용액으로 평활근 세포를 관류시 30분경 세포내 유리 Ca²⁺ 늑도는 심근경색 용액내 Ca²⁺의 늑도가 증가함에 따라 세포내 유리 Ca²⁺ 늑도가 증가량을 관찰할 수 있었다.

5. Nifedipine과 nickel이 허혈성 심근경색 후 재관류시 세포내 유리 Ca²⁺ 늑도 변화에 미치는 영향

허혈성 심근경색 용액으로 평활근 세포를 관류시 증가했던 세포내 유리 Ca²⁺ 늑도가 관류액을 정상 KH용액으로 바꾸어 세척시 빠른 시간내에 안정시 세포내 유리 Ca²⁺ 늑도로 회복되지 않고 일정시간 유지됨을 관찰할 수 있는데, 이러한 정상 KH용액으로 재관류시 nifedipine과 nickel이 세포내 유리 Ca²⁺ 늑도에 미치는 영향을 알아 보고자 하였다. 먼저 허혈성 심근경색 용액으로 평활근 세포를 관류시 30분경 세포내 유리 Ca²⁺ 늑도가 현저히 증가한 후 Ca²⁺ channel blocker인 nifedipine(5×10⁻⁷M)이 함유된 정상 KH용액으로 관류액을 바꾸었을 때 세포내 유리 Ca²⁺ 늑도의 변화 양상은 (Fig. 10B)에서 보개 (Fig. 10A)와 거의 유사하였다. 그러나 Na⁺-Ca⁺⁺ exchange의 차단제로 알려진 5mM nickel이 함유된 정상 KH용액으로 평활근 세포를 관류시킨 경우 세포내 유리 Ca²⁺ 늑도의 변화 양상은
Fig. 8. Nickel이 혈혈성 심근정지시 세포내 유리 Ca^{2+} 농도 변화에 미치는 영향. A: 폐활근 세포를 혈혈성 심근정지 용액 (CP+N_2: cardioplegic solution gassed with 100% N_2)으로 관류시 세포내 유리 Ca^{2+} 농도 변화. B: 폐활근 세포를 5 mM nickel이 함유된 혈혈성 심근정지 용액 (CP+N_2+Ni^{2+}: cardioplegic solution containing nickel gassed with 100% N_2)으로 관류시 관찰되는 세포내 유리 Ca^{2+} 농도의 변화. C: 혈혈성 심근정지 용액과 nickel이 함유된 혈혈성 심근정지 용액으로 관류시 증가된 세포내 유리 Ca^{2+} 농도 peak를 통계처리하여 평균±표준오차로 표시하였다. *: P<0.05. 그림의 ▲는 각각 10분, 10분, 5분 동안 fluorescence의 측정을 중단한 것을 표시한 것이다.

(Fig. 10C) 대조군(Fig. 10D)에 비해 매우 빨리 안정시 세포내 유리 Ca^{2+} 농도로 회복됨을 알 수 있었다.

고 안

혈혈상태에 노출된 관상동맥을 정상혈액으로 재관류 시 혈관 기능의 손상, 혈관막을 통한 투과도의 변화13 및 "low-reflow" 현상14,15과 같은 여러가지 가역적인 기능 손상 이외에 "no-reflow" 현상1,12과 같은 비가역적인 혈혈-재관류 손상이 관찰되어 진다고 보고된 바 있다. 이러한 "no-reflow" 현상의 기전으로는 혈관 손상에 의해 유발되는 내피세포의 edema가 혈류를 차단하거나3, 혈소판이나 thrombi에 의한 혈류의 차단16,17,18,19,20 또는 심근세포의 ischemic contracture가 관상동맥을 압박해 정상적인 혈류를 차단하여5,21,27 알아낸 것으로 알려져 있으나 아직까지 그 기전은 명확하게 밝혀져 있지 않다. 또한 관상혈류량 조절에 중요한 역할을 하고 있는 관상 동맥 폐활근 세포의 수축정도가 저온은 "no-reflow" 현상에 미치는 효과에 대해서도 아직 규명되지 못하였다. 따라서 본 실험에서는 가토 관상동맥으로 부터 분리한 폐활근 세포를 심최정지 용액으로 관류하면서 혈혈 상태를 유지하였을 때 Fura-2를 사용하여 폐활근 세포내 유리 Ca^{2+} 농도 변화양상을 측정함으로써 폐활근 세포의 수축 정도가 "no-reflow" 현상의 기전중 다른 하나의 기전으로 작용할 수 있는지를 규명하고자 하였다.

관상동맥으로 부터 분리된 단일 폐활근 세포를 5pM Fura-2/AM으로 37℃에서 60분간 incubation한 후 정상 KH 용액으로 관류하였을 때 관찰되는 안정시 폐활

- 571 -
근 세포내 유리 Ca^{2+} 농도는 134.2 ± 34.0 mM 이었는데, 이는 다른 연구자들의 안정시 평활근 세포내 유리 Ca^{2+} 농도가 100~300 mM 이라는 보고와 잘 일치하였다. 이 후 심근정지 용액으로 평활근 세포를 관리하였을 때 세포내 유리 Ca^{2+} 농도는 안정시에 비해 유의하게 증가되었으며, 이것은 증가 정도는 허혈성 심근정지 용액으로 관리시킨 경우 더욱 현저하였다고 (Fig. 3). 그런데 Klener 등(1974)의 의학적 허혈성 심근정지 용액을 40분간 관리시 심한 내피세포 손상이나 관류 장애로 나타나지 않으나 90분간 관리시 혈관 손상이나 “no-reflow” 현상이 초래된다고 보고한 바 있다. 본 실험에서 허혈성 심근정지 용액으로 평활근 세포를 관리하였을 경우, 관류 10분경 세포내 유리 Ca^{2+} 농도는 증가되지 않았으나, 관류 30분경에는 세포내 유리 Ca^{2+} 농도의 증가와 함께 세포의 수축이 관찰되었으며 관류 60분경에는 세포내 유리 Ca^{2+} 농도의 현저한 증가와 함께 평활근 세포의 contracture가 초래되어 재관류시 안정시로 거의 회복되지 않았다 (Fig. 4).

한편 평활근 세포내 유리 Ca^{2+} 농도는 혈관 평활근 세포막에 존재하는 Ca^{2+} channel과 Na^{+}-Ca^{2+} exchange 또는 SR로부터의 유리 동정화되었음을 증가하게 된다. 따라서 평활근 세포를 심근경지 또는 허혈성 심근경지 용액으로 관리시 세포내 유리 Ca^{2+} 농도의 증가 기전을 규명하고자 하였다.

먼저 심근경지 용액과 허혈성 심근경지 용액으로 평활근 세포를 관리시 관찰되는 세포내 유리 Ca^{2+} 농도 증가 현상이 SR로부터 Ca^{2+} 유리의 증가에 기인하는 것인지지를 확인하기 위하여 20mM caffeine을 반복 투여하여 SR내의 Ca^{2+}를 고갈시킨 후, 관류액의 조성을 20mM caffeine이 포함된 심근경지 또는 허혈성 심근경지 용액으로 바꾸어 관리시키면서 평활근 세포내 유리 Ca^{2+} 농도의 변화를 관찰하였다. 그러나 20mM caffeine의 반
복 처치에 의해 SR내 Ca^{2+}이 고감된 상태에서도 심근
정지 또는 혈성 심근정지시 세포내 유리 Ca^{2+} 농도의
증가 정도는 대조군과 거의 유사하였다(Fig. 5와 6). 따
라서 심근정지 또는 혈성 심근정지시 세포내 유리
Ca^{2+}의 증가에 SR로부터의 Ca^{2+} 유리가 영향을 미치
지 못하는 것으로 생각되어 진다.

평활근 세포를 심근정지 또는 혈성 심근정지 유액으로
관류하였을 경우 고농도 K⁺에 의해 박진압의 탈분극
및 이에 따른 Ca^{2+} channel의 활성가 증가되어33,38 세
포내 유리 Ca^{2+} 농도가 증가될 수 있다. 따라서 심근정
지 유액과 혈성 심근정지 유액으로 평활근 세포를 관
류시 관찰되는 세포내 유리 Ca^{2+} 농도 증가가 탈분극에
의해 활성화된 Ca^{2+} channel을 통한 세포내로의 Ca^{2+}
유입에 의한 것인지를 규명하기 위해 Ca^{2+} channel
blocker인 nifedipine을 심근정지 유액 또는 혈성 심
근정지 유액에 참가하여 세포내 유리 Ca^{2+} 농도의 변화
을 관찰하였다. 평활근 세포를 nifedipine(5×10^{-7} M)이
함유된 심근정지 또는 혈성 심근정지 유액으로 관류시
킨 경우, 심근정지 또는 혈성 심근정지시 세포내 유리
Ca^{2+} 농도의 증가 정도는 대조군에 비해 약간되는 것을
관찰할 수 있었다(Fig. 5, 7). 이같은 결과는 심근정지
또는 혈성 심근정지시 Ca^{2+} channel을 통한 세포내로
의 Ca^{2+} 유입이 심근정지 또는 혈성 심근정지 유액
에 의해 세포내 유리 Ca^{2+} 농도의 증가가 관찰된
가지 중 하나로, 실제 심장 및 심근성 심근성 심근정지
유액에 의해 유입된 Ca^{2+}가 세포내로의 Ca^{2+}
유입에 의한 것인지를 규명하기 위해 Ca^{2+} channel
blocker인 nifedipine을 심근정지 유액 또는 혈성 심
근정지 유액에 참가하여 세포내 유리 Ca^{2+} 농도의 변화
을 관찰하였다.
이 빠르다는 것이 보고된 바 있음11). 평활근 세포에서도 동일한 효과를 추측할 수 있으며 본 실험 결과가 이를 뒷받침하는 실험적 증거라고 생각된다.

또한 평활근 세포가 혈관상태에 빠졌을 때 세포내 ATP 함량의 감소로 인해 Na⁺-K⁺ pump의 역제로 세포내 Na⁺의 농도가 증가되거나12, 고농도 K⁺에 의해 막접합이 탈분해 되는 경우 Na⁺-Ca²⁺ exchange를 통한 세포내의 Ca²⁺ 유입이 증가될 수 있다13). 따라서 심근정지 용액과 혈관성 심근정지 용액으로 평활근 세포를 관리시 관찰되는 세포내 유리 Ca²⁺ 농도 증가가 Na⁺-Ca²⁺ exchange를 통한 세포내의 Ca²⁺ 유입에 의한 것인지지를 규명하기 위해, 고농도 nickel(5mM)이 함유된 심근정지 용액 또는 혈관성 심근정지 용액으로 평활근 세포를 관리시킨 경우 세포내 유리 Ca²⁺ 농도의 변화를 관찰하였다. 심근정지 용액에 5mM nickel을 첨가하여 평활근 세포를 관리시킨 경우, 심근정지 용액에 의한 세포내 유리 Ca²⁺ 농도의 증가 현상이 완전히 억제되었다(Fig. 5). 그러나 혈관성 심근정지 용액에 5mM nickel을 첨가하여 평활근 세포를 관리시킨 경우, 혈관성 심근정지 용액에 의한 세포내 유리 Ca²⁺ 농도의 증가 현상이 대조군에 비해 유의하게 억제되었으나 완전히 억제되지 않았다(Fig. 5). 이에 nickel에 의해 억제되지 않은 세포내 유리 Ca²⁺ 농도는 혈관 기관동안 증가된 세포내 Ca²⁺에 의해 세포막에 존재하는 phospholipase의 활성화에 의한 혈관막의 손상에 기인하는 것으로 추측된다14). 본 실험에서 Na⁺-Ca²⁺ exchange blocker로서 사용한 nickel은 Na⁺-Ca²⁺ exchange의 역제15)이외에 Ca²⁺ channel blocker로서도 기능을 잘 알릴 수 있으므로, 고농도 nickel의 역제 효과는 Ca²⁺ channel의 차단 효과일 수도 있다. 그러나 본 실험의 경우 고농도 nickel에 의한 심근정지 또는 혈관성 심근정지시 세포내 유리 Ca²⁺ 농도 증가의 역제 정도가 nifedipine에 의한 역제 정도보다 더욱 더 현저하고, Na⁺-Ca²⁺ exchange를 통한 세포내로의 Ca²⁺ 유입을 감소시키기 위해 Ca²⁺ 농도가 낮은 혈관성 심근정지 용액으로 평활근 세포를 관리시킨 경우 혈관성 심근정지 시 세포내 유리 Ca²⁺ 농도의 증가가 억제되지 않은 것은 꼭 관찰할 수 있었다(Fig. 9). 따라서 Na⁺-Ca²⁺ exchange를 통한 세포내로의 Ca²⁺ 유입이 심근정지 또는 혈관성 심근정지시 세포내 유리 Ca²⁺ 농도 증가에 크게 관여할 것으로 추측된다.

한편 평활근 세포를 혈관성 심근정지 용액으로 관찰한 후 정상 KH용액으로 재관류시 세포내 유리 Ca²⁺ 농도는 대부분의 세포에서 안정시켜 빠르게 회복되지 않고 10분 이상 지속되는 것을 관찰할 수 있었는데 이의 기전은 명확한 결과를 보이지 않았다. 재관류시 세포내 유리 Ca²⁺ 농도의 증가 기전은 아직까지도 명확하게 밝혀지지 않았지만 Ca²⁺ channel과 Na⁺-Ca²⁺ exchange를 통한 Ca²⁺ 유입에 의한 것으로 추측하고 있다. 따라서 본 실험에서도 재관류시 세포내 유리 Ca²⁺ 농도가 10분 이상 지속되는 것이 재관류시 Ca²⁺ channel과 Na⁺-Ca²⁺ exchange를 통한 세포내의 Ca²⁺ 유입에 의한 것인지지를 확인하기 위하여 재관류 용액에 nifedipine(5×10⁻⁷ M) 또는 고농도 nickel(5mM)을 첨가한 경우 세포내 유리 Ca²⁺ 농도의 변화양상을 관찰하였다. 혈관성 심근정지 용액으로 평활근 세포를 관리시킨 세포내 유리 Ca²⁺ 농도가 현저히 증가한 후 nifedipine이 함유된 정상 KH용액으로 관리액을 바꾸었을 때 세포내 유리 Ca²⁺ 농도의 변화양상은 대조군과 거의 유의하지 않았으나, Fig. 10. 고농도 nickel의 함유된 정상 KH용액으로 관리시킨 경우 세포내 유리 Ca²⁺ 농도의 변화양상은 대조군에 비해 매우 빠르게 안정시 세포내 유리 Ca²⁺ 농도로 회복되었다(Fig. 10). 이러한 결과는 nifedipine의 농도가 10⁻⁷ M이하일 때 재관류동안 세포내로의 Ca²⁺ 유입을 억제하지 않는다는 보고16)와 재관류시 Ca²⁺ 유입이 Ca²⁺ 역제의 약화적 농도에서는 억제되지 않으나17)고농도의 nickel이나 cyanide에 의해 억제된다라고 보고18,19)와 일치한다.

그러나 "no-reflow" 현상이 coronary occlusion 후 정상 혈액으로 재관류시 관상동맥을 통한 혈류가 차단되는 현상 손상이기 때문에20) 재관류 평활근의 수축으로 "no-reflow" 현상은 설명하기 위해서는 혈관성 심근정지시 증가되었던 세포내 유리 Ca²⁺이 재관류시 더욱 더 증가되는 것이 바람직하다. 그러나 재관류 손상이 혈관 손상 후의 동반어로 나타나므로21) 본 실험결과에서 와 같이 혈관성 심근정지시 세포내 유리 Ca²⁺ 농도의 증가를 인한 평활근 세포의 수축이 재관류 10분까지 지속되고, 또한 평활근 세포를 혈관성 심근정지 용액으로 60분간 관찰하였을 경우 세포내 유리 Ca²⁺ 농도의 증가가 더욱 현저하므로 혈관성 심근정지시 재관류시 세포내 유리 Ca²⁺ 농도의 증가가 "no-reflow" 현상의 기전으로 작용할 수 있으리라 생각한다.
결 론

가토 관상동맥으로부터 분리한 평활근 세포를 심근정지 용액으로 관류하면서 휴혈 상태를 유발하였을 때, Fura-2를 사용하여 평활근 세포내 유리 Ca^{2+} 농도 변화량을 측정함으로써 평활근 세포의 수축이 "no-reflow" 현상의 기전중 하나로 작용할 수 있는지를 규명하고자 실험하여 다음과 같은 결과를 얻었다.

1) 심근정지시와 휴혈성 심근정지시 평활근 세포내 유리 Ca^{2+} 농도는 안정시에 비해 유의하게 증가되었는데, 휴혈성 심근정지의 경우 세포내 유리 Ca^{2+} 농도의 증가가 더욱 더 현저하였다.

2) 심근정지시 증가되었던 세포내 유리 Ca^{2+} 농도는 caffeine을 반복 전 치료하여 sarcoplasmic reticulum (SR) 내 저장된 Ca^{2+}를 고갈시킨 후 caffeine이 함유된 심근정지 용액으로 관류시 세포내 유리 Ca^{2+} 농도의 증가가 대조군과 유사하였다. 그러나 Ca^{2+} channel blocker인 nifedipine가 함유된 심근정지 용액에 의해서는 심근정지 시세포내 유리 Ca^{2+} 농도의 증가가 더욱 감소되었으며, Na^{+}-Ca^{2+} exchange 차단제인 고농도 nickel이 함유된 심근정지 용액에 의해서는 완전히 억제되었다.

3) 평활근 세포내 caffeine을 반복 전 치료하여 SR 내 저장된 Ca^{2+}를 고갈시킨 후 caffeine이 함유된 휴혈성 심근정지 용액으로 관류시 세포내 유리 Ca^{2+} 농도의 증가가 대조군과 유사하였다. 그러나 Ca^{2+} channel blocker인 nifedipine가 함유된 휴혈성 심근정지 용액에 의해서는 휴혈성 심근정지시 세포내 유리 Ca^{2+} 농도의 증가가 대조군에 비해 의의있게 감소되었으며, Na^{+}-Ca^{2+} exchange 차단제인 고농도 nickel이 함유된 심근정지 용액에 의해서는 nifedipine 치료시보다 더욱 더 억제되었으나 완전히 억제되는 것은 않았다.

4) Ca^{2+} 농도가 다른 휴혈성 심근정지 용액으로 평활근 세포를 관류시 세포내 유리 Ca^{2+} 농도는 용액내 Ca^{2+} 농도에 비해하여 증가되었으며, Ca^{2+}이 세포외 휴혈성 심근정지 용액의 경우 심근정지 기간에는 세포내 유리 Ca^{2+} 농도가 증가되지 않았으나 재관류시 다소 증가되었다.

5) 휴혈성 심근정지 용액으로 평활근 세포를 관류시 증가되었던 세포내 유리 Ca^{2+} 농도는 nifedipine이 함유된 정상 KH용액으로 관류만을 바꾸었을 때 대조군과 거의 유사하게 안정시 세포내 유리 Ca^{2+} 농도로 향하여 일부 회복되었으나, 5mM Ni^{2+}가 함유된 정상 KH 용액으로 평활근 세포를 관류시킨 경우 세포내 유리 Ca^{2+} 농도는 대조군에 비해 매우 빨리 안정시 세포내 유리 Ca^{2+} 농도로 회복되었다.

이상의 실험결과로 보아 휴혈성 심근정지 또는 재관류시 관찰되는 평활근 세포내 유리 Ca^{2+} 농도의 증가가 "no-reflow" 현상의 기전중 하나로 작용할 것이라 추측된다.

References

2) Shen AC and Jennings RB : Kinetics of calcium accumulation in acute myocardial ischemic injury. Am J Pathol 67 : 441-452, 1972
5) Klener RA, Ganote CE and Jennings RB : The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J CIn Invest 54 : 1496-1508, 1974
6) Kubler W and Spieckerman PG : Regulation of glycolysis in the ischemic and anoxic myocardium. J Mol Cell Cardiol 1 : 351-359, 1970

- 575 -

45) Poole-Wilson PA, Harding DP and Bourdillon PDV: Calcium out of control. J Mol Cell Cardiol 16: 175-187, 1984