비후증 심근증에서 안지오테신 전환효소 유전자
유전적 다양성의 양상*

서울대학교 의과대학 내과학과실
최진호 · 김효수 · 이상철 · 최현석 · 최성준
오병희 · 이명묵 · 박영배 · 최윤식 · 서정돈

= Abstract =

ACE(Angiotensin Converting Enzyme) Gene Polymorphism in Hypertrophic Cardiomyopathy

Jin-Ho Choi, M.D., Hyo-Soo Kim, M.D., Sang-Chol Lee, M.D.,
Hyun-Seok Choi, M.D., Seong-Choon Choe, M.D., Byung-Hee Oh, M.D.,
Myoung-Mook Lee, M.D., Young-Bae Park, M.D.,
Yun-Shik Choi, M.D., Jung-Don Seo, M.D.

Department of Internal Medicine, Seoul National University College of Medicine,
Seoul, Korea

Background: In hypertrophic cardiomyopathy (HCM), which is known as genetic disease, severity and location of left ventricular hypertrophy (LVH) is variable. So we investigated additional modify role of angintensin-I converting enzyme (ACE) gene, which is known to be implicated in cardiac hypertrophy. ACE genotypes and degree of hypertrophy were determined in each subject.

Methods: 172 patients (37 HCM, 26 normotensive LVH, 19 hypertensive LVH, 79 normal control) were included in this study. Left ventricular mass index (LVMI) was calculated from electrocardiogram by Rautaharju equation, and LVH was defined as LVMI is above 131g/m² in male or above 110g/m² in female. In HCM group, extent of left ventricular hypertrophy was also assessed by Wigle’s method. DNA was extracted from peripheral blood and ACE I/D polymorphism was confirmed by PCR method.

Result: Frequency of D/D genotype is significantly higher in normotensive LVH group (0.231) and in HCM group (0.243) than normal control group (0.076) (Fisher’s exact test, p < 0.05). There was no significant difference in genotype frequency between other groups. The mean LVMI (g/m²) and Wigle’s LVH score was significantly higher in DD than II and ID (259.8 ± 156.4 g/m² vs 176.6 ± 56.2 g/m², p < 0.05, t-test, 7.82 ± 2.4 vs 5.35 ± 1.9, p < 0.05, Mann-Whitney test). LVMI and LVH score also exhibited increasing tendency toward II, ID DD genotypes.

Conclusion: D allele of ACE gene contribute to the development of cardiac hypertrophy in HCM as well as normotensive LVH.

KEY WORDS: Hypertrophic cardiomyopathy · Angiotensin I-converting enzyme gene polymorphism · Left ventricular hypertrophy.

*본 연구는 1993년 서울대학교병원 치기진료연구비의 일부 보조에 의한 것임.
비후성 심근증은 다른 심장질환 없이 좌심실 비후를 일으키는 질환으로 좌심실비후의 부위와 정도는 다양하게 나타나게 된다. 이 질환은 양 심방에서 가속이 있어 유전적인 배경이 있을음을 시사하는데 근래에 들어서 beta-MHC, alpha-tropomyosin, 심근 troponin T 등 심근을 구성하는 단백질의 유전자 이상이 있음을 밝혀졌다. 그러나 비후성 심근증 환자에서 좌심실 비후의 정도는 같은 유전자의 이상이 있는 가족 내의 환자들 사이에서도 매우 다양하며 비후가 없이 정상일 수도 있다. 따라서 비후성 심근증에서 심근 비후의 발현에는 상기 심근을 구성하는 유전자 이외의 다른 유전적 요소가 관련이 있으면서 생각된다.

레이던 안지오텐신 시스템은 심혈관계에서 주로 혈관 수축에 의하여 혈압 조절하는 내분비계이며 최근에는 심혈관계, 특히 심근의 비후에 중요한 역할을 할 수 있다고 알려져 있다.

레이던 안지오텐신 시스템의 최종적인 작용물질인 안지오텐신 II는 안지오텐신 전환효소에 의하여 안지오텐신 I로부터 생성되게 되는데, 안지오텐신 전환효소 유전자에는 두가지 대립유전자의 다형성이 (polymorphism)가 있다. 즉, intron 하반부에 287bp의 유전자 분절이 결손 (deletion) 되어있는 allele(D allele)과 삽입 (insertion) 되어있는 allele(I allele)이 존재하며 각각의 I, I/D, D/D의 세가지의 유전자 형 중 하나가 된다.

D allele을 지닌 사람은 혈관 안지오텐신 전환효소와 심근 안지오텐신 전환효소의 활성도가 그렇지 않은 사람에 비하여 모두 높다는 사실이 알려졌다. 따라서 D/D 유전자형은 다른 유전자형보다 안지오텐신 전환효소 유전자 발현 (expression)이 촉진되어 이에 의하여 심근의 비후가 발현되거나 또는 다른 기전에 의한 심근의 비후를 촉진할 가능성을 생각할 수 있다.

실제 좌심실비후 환자군에서는 정상 대조군보다 D/D 유전자형의 비도가 높은 사실이 여러 제안 보고된 바 있다. 그러나 라나킨자 좌심실 비후를 특정으로 하는 비후성 심근증에서는 안지오텐신 전환효소 유전자 대형성에 관한 연구는 국내에는 아직 없으며 외국에 서도 많지 않은 설정이다.

이에 저자들은 본 연구에서 우리나라의 비후성 심근증 환자에서 안지오텐신 전환효소 유전자 유전적 다양성의 양상 및 이러한 유전적 다양성이 비후성 심근증의 비후의 발현 정도와는 어떠한 관련이 있는지에 관하여 알아보고자 하였다.

연구대상 및 방법

1. 연구대상

1995년 3월부터 1995년 8월까지 서울대병원에서 비후성심근증으로 진단받은 37명의 환자와 26명의 혈압이 좌심실비후 환자, 19명의 혈압이 높은 좌심실비후 환자 및 79명의 정상 대조군 등 총 198명을 대상으로 연구를 시행하였다 (Table 1).

이후 비후성 심근증은 심초음파에 좌심실 백의 두께가 15mm 이상이고 좌심실 확장의 소견이 없으며 좌심실 비후를 일으킬 다른 이차적인 원인이 없는 것으로 진단하였다. 심초음과 영상이 부적합한 환자의 정상도상 유의한 변화를 초래할 수 있는 심근경색증, 심근경색증, WPW 증후군 및 심장판막 질환 환자는 연구대상에서 제외하였다. 비후성 심근증군 중 서로 혈연관계인 환자는 없었다.

다른 환자군은 개별 간격으로 3회 측정된 혈압이 모두 140/90 이상이나 과거에 고혈압 진단을 받고 현재 항고혈압제 투여를 하고 있는 사람들을 고혈압군으로 정의하였다. 좌심실 질량수지래 심초음파에서 Rautaharju의 식으로 산출하여 남자는 131g/m² 이상, 여자는 110g/m² 이상을 좌심실 비후가 있는 것으로 정의하였다. 고혈압군 외에 심근경색 유의한 변화를 초래할 수 있는 심근경색증, 심근경색증, WPW 증후군 및 심장판막 질환 환자는 연구대상에서 제외하였다. 고혈압이 있는 군

| Table 1. 연구대심군 |
|-------------------|-----------------|-----------------|-----------------|
| | N | Age | BMI(kg/m²) | M : F |
| Hypertrophic | 37 | 52.8 | 24.6 ± 2.5 | 22 : 15 |
| cardiomyopathy | | | | |
| Hypertensive | 19 | 57.7 | 25.7 ± 3.7 | 8 : 11 |
| LVH* | 37 | 58.5 | 24.2 ± 2.5 | 28 : 9 |
| Normotensive | 26 | 54.5 | 24.7 ± 3.6 | 7 : 19 |
| LVH | 79 | 55.0 | 23.6 ± 3.0 | 60 : 19 |
| Total | 198 | | | |
결과
1. 비후성 심근증에서 인지오플신 전환효소 유전자 유전적 다양성의 양상

비후성 심근증 환자군(n=37) 내에서 인지오플신 전환효소 유전자 유전형의 분포는 1/1형이 10명, 1/D형이 18명, D/D형이 9명으로서 1와 D allele의 비는 0.514 : 0.486이었다(Table 2). 이를 정상 대조군(n=79)과 비교하여 보면 D/D형의 변도 및 D allele의 변도는 비후성 심근증에서는 각각 0.24, 0.49이고 정상 대조군에서는 각각 0.076, 0.38로서 비후성 심근증에서 통계적으로 유의하게 D/D형의 변도가 높았다(p=0.018, Fisher's exact test)(Table 3).

2. 비후성 심근증 환자군에서 인지오플신 전환효소 유전자 유전적 다양성의 양상과 좌심실 질량과의 연관성

비후성 심근증 환자군에서 내에서 유전자형에 따른 비후의 정도를 비교하였다. 심전도로 좌심실질량지수를 구할 수 있었던 29명과 심초음파로 좌심실비후지수가 평가 가능했던 23명에 대하여 유전자형을 비교하여 보면, D/D 유전자형에서 다른 유전자형(1/1과 1/D 유전자형)에 비하여 좌심실질량지수와 Wigle의 좌심실 비후 지수가 모두 통계적으로 유의하게 높았다(좌심실

<table>
<thead>
<tr>
<th>Table 2. 연구 대상군별 ACE 유전자형의 분포</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Hypertrophic cardiomyopathy</td>
</tr>
<tr>
<td>(0.154 : 0.486)</td>
</tr>
<tr>
<td>Normotensive LVH+</td>
</tr>
<tr>
<td>(0.500 : 0.500)</td>
</tr>
<tr>
<td>Hypertensive LVH+</td>
</tr>
<tr>
<td>(0.684 : 0.316)</td>
</tr>
<tr>
<td>Hypertensive LVH-</td>
</tr>
<tr>
<td>(0.581 : 0.416)</td>
</tr>
<tr>
<td>Normotensive LVH-</td>
</tr>
<tr>
<td>(0.620 : 0.380)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3. 심근 비후와 ACE 유전자형과의 관련성</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>HCM</td>
</tr>
<tr>
<td>Normotensive LVH</td>
</tr>
<tr>
<td>Hypertensive LVH</td>
</tr>
<tr>
<td>Normal</td>
</tr>
</tbody>
</table>

3. 통계적 방법

양 군 사이의 분율의 비교에는 chi-square test 및 Fisher's exact test를 이용하였으며, 양 군 사이의 평균치의 비교에는 student t test를 이용하였다.
| Table 4. 비후성 심근중에서의 ACE 유전자형과 좌심실질 농도수와의 관계(1) |
|-----------------|-----------------|-----------------|-----------------|
| I/1+1/D | D/D | p value |
| LVMl(g/m²) | 176.6±56.2 | 259.8±156.4 | 0.04* |
| (by ECG) (n=21) (n=8) |
| Wige’s LVH score | 5.35±1.9 | 7.83±2.4 | 0.04** |
| (n=17) (n=6) |

** Mann-Whitney test

| Table 5. 비후성 심근중에서의 ACE 유전자형과 좌심실질 농도수와의 관계(2) |
|-----------------|-----------------|-----------------|-----------------|
| I/1+1/D | D/D | p value |
| LVMl(g/m²) | 163.0±44.2 | 186.9±63.6 | 259.8±156.4 |
| (by ECG) (n=9) (n=12) (n=8) |
| Wige’s LVH score | 5.29±1.7 | 5.40±2.1 | 7.83±2.4 |
| (n=7) (n=10) (n=6) |

결망지수 : 259.8±156.4g/m² vs 176.6±56.2g/m², p < 0.05, t-test, 좌심실비후 지수 : 7.83±2.4 vs 5.35±1.9, p < 0.05, Mann-Whitney test (Table 4).

비후성 심근중 환자군을 I/1, I/1D, D/D 세 가지 유전형으로 나누어 심기능 정도를 비교한 결과 통계적으로 유의하지는 않으나 I/1, I/1D, D/D군으로 간주해 좌심실질량수와 좌심실비후지수가 모두 증가하는 추세를 보였다(Table 5).

3. 비후성 심근중 환자군과 다른 환자군에서 안지오텐신 전환효소 유전자 유전적 다형성의 영양의 비교
비후성 심근중 환자군(n=37), 혈압이 정상인 좌심실
비후환자군(n=37), 고혈압이 있는 좌심실비후 환자군
(n=19), 정상 대조군(n=79) 각각에서 I/1 D 유전자형
과 다른 유전자형(I/1와 I/1D 유전자형)으로 나누어 보면
비후성 심근중 환자군과혈압이 정상인 좌심실비후 환자
군은 정상 대조군보다 D/D 유전자형의 비도가 통계적
으로 유의하게 높았으나(p=0.018, p=0.04, Fischer’s exact test) 고혈압이 있는 좌심실비후 환자군과 정상
대조군은 정상 대조군과 차이가 없었다(Table 3).

4. 비후성 심근중 환자군에서 안지오텐신 전환효소 유전자 유전적 다형성의 양상과 임상인
자와의 비교
비후성심근중 환자군 내에서는 성별이나 나이, 체표면
적, 체질량지수, 혈중 콜레스테롤 등 임상인자에 따른
유전자형의 차이는 없었다. 또한 비후 부위, 심초음파에서
의 좌심실 유출로 폐색, 심전도상에서의 T 파등의 이

| Table 6. ACE 유전자형에 따른 비후성 심근증군의 임상
양상 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I/1+1/D</td>
<td>D/D</td>
<td>p value</td>
<td></td>
</tr>
<tr>
<td>Total n=37</td>
<td>28(0.757)</td>
<td>9(0.243)</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>M(=22)</td>
<td>17(0.773)</td>
<td>5(0.227) NS</td>
</tr>
<tr>
<td>F(=15)</td>
<td>11(0.733)</td>
<td>4(0.267) NS</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>52.2±12.6</td>
<td>54.4±12.1</td>
<td>NS</td>
</tr>
<tr>
<td>BSA(m²)</td>
<td>1.74±0.18</td>
<td>1.68±0.07</td>
<td>NS</td>
</tr>
<tr>
<td>BMl(kg/m²)</td>
<td>24.0±3.20</td>
<td>23.8±1.19</td>
<td>NS</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>185±35.2</td>
<td>191±28.0</td>
<td>NS</td>
</tr>
</tbody>
</table>

| Table 7. ACE 유전자형에 따른 비후성 심근증의 심초음파
및 심전도의 이상 소견 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I/1+1/D</td>
<td>D/D</td>
<td>p value</td>
<td></td>
</tr>
<tr>
<td>Type spetal</td>
<td>15</td>
<td>5</td>
<td>NS</td>
</tr>
<tr>
<td>apical</td>
<td>9</td>
<td>3</td>
<td>NS</td>
</tr>
<tr>
<td>midventricular</td>
<td>4</td>
<td>0</td>
<td>NS</td>
</tr>
<tr>
<td>SAM+</td>
<td>5</td>
<td>1</td>
<td>NS</td>
</tr>
<tr>
<td>SAM-</td>
<td>21</td>
<td>7</td>
<td>NS</td>
</tr>
<tr>
<td>LVOT obstr+</td>
<td>8</td>
<td>5</td>
<td>NS</td>
</tr>
<tr>
<td>LVOT obstr-</td>
<td>20</td>
<td>5</td>
<td>NS</td>
</tr>
<tr>
<td>ECG abnormality+</td>
<td>20</td>
<td>5</td>
<td>NS</td>
</tr>
<tr>
<td>ECG abnormality-</td>
<td>8</td>
<td>3</td>
<td>NS</td>
</tr>
</tbody>
</table>

| Table 8. Wige’s LVH score |
|-----------------|-----------------|
| Extent of hypertrophy | points |
| Septal thickness(basal 1/3 of septum) | 1 - 4 |
| Extension to papillary m.(basal 2/3 of septum) | 2 |
| Extension to apex(total septal involvement) | 2 |
| Anterolateral wall extension | 2 |
| Total | 1 - 10 |

성 소견과도 차이가 없었다(Table 6, 7).

고 안

1. 심근비후와 ACE유전자형
본 연구에서는 안지오텐신 전환효소 유전자 D allel회
비후성 심근중 및 고혈압 등의 다른 이차적인 원
인의 없는 좌심실비후에서의 심근비후와 관련이 있었다.
좌심실비후에 대한 현재까지의 보고를 보면 서양에서는
1994년 독일의 Schunkert 등이 좌심실 비후가 있는 환
자들 중 특히 혈압이 정상인 남자에서 정상인 비에 비하여
D/D형이 많음을 발표하였으며(1) Kupari는 특별히 심
혈관질환이 없는 경우에는 ACE 유전자형의 심초음파로
측정한 좌심실의 크기나 질량, 기능과는 무관함을 보고
하였다(2). 동양에서도 일본의 Iwai 등의 외래에서 142명

- 1110 -
울 무작위로 추출한 연구에서 안지오텐신 전환효소 유전자가 좌심실점막과 연관이 있다고 발표하였다. 또한 비후성 심근증에 관해서는 1995년 Lechin 등은 비후성 심근증에서의 유전자의 비율 I/D : D/D의 비가 33 : 90 : 60.(0.18 : 0.49 : 0.33) I : D=156 : 210.(0.426 : 0.573)으로 보고하였으며 D/D 형식으로 심초음파에서 Wigle의 좌심실비후수와 Area-Length 범으로 측정한 좌심실점막이 다른 유전자보다 높음을 발표하였다.

안지오텐신 전환효소 유전자형의 분포 양상은 서양 각 국에서 거의 동일하다 I/D : D/D의 비가 약 0.22 : 0.43 : 0.35이고 I allele : D allele의 비는 약 0.42 : 0.58로서 D allele의 번도가 더 높은 것으로 되어 있다. 그러나 동양에서는 1993년에 처음 일본에서 발표된 자료에서는 정상 대조군에서 I/D : D/D의 비가 0.394 : 0.192 : 0.343이고 I allele의 비는 0.601 : 0.399로서 오히려 I allele의 번도가 높았으며 1996년에 우리나라에서 발표된 정상 대조군(68명)의 안지오텐신 전환효소 유전자형의 유전자의 분포 양도 I/D : D/D의 비는 0.353 : 0.500 : 0.147이고 I allele : D allele의 비는 0.603 : 0.397로서 일본과 유사하게 I allele의 번도가 더 높았다. 안지오텐신 전환효소 유전자형의 번도가 위와 같이 서로 다른 동양과 서양에서 이렇게 좌심실비후 및 비후성 심근증과 안지오텐신 전환효소 유전자형의 관련성에 대하여 같은 결과가 나온 것은 이들 사이의 연관성을 더욱 일명해하는 것으로 보인다.

2. 분자생물학적 시간에서 본 심근비후기의 기전과 ACE 유전자형

레닌 안지오텐신 시스템의 최종적인 작용물질인 안지 오텐신 II는 안지오텐신 전환효소에 의해 안지오텐신 I로부터 생성되는데 이는 케토실림 및 췌의 심근비후 모델에서 심근 세포의 비후를 유도함이 알려져 있다. 분자적 수준에는 안지오텐신 전환효소 mRNA가 췌의 심근비후 모델에서 증가되며, 사람을 대상으로한 연구에서 흡연자, 관절염, 당뇨병, 고혈압이 있는 사람에서 주로 심근 비후가 증가한 것으로 보고되었다. 이러한 연구결과에서 시각적 인자가 비후가 유전자의 유전자형에 의존한다. 비후성 심근증의 유전자의 유전자형이 좌심실 비후와 연관성이 있을 가능성은 충분히 생각할 수 있었다. 불행히도 심근의 조직 안지오텐신 전환효소의 활성도에 가장 크게 기여하는 암자는 바로 안지오텐신 전환효소의 유전자형이다. 즉 안지오텐신의 유전자형은 혈장 및 심근내의 안지오텐신 전환효소의 활성도에 영향을 주며 결과적으로 좌심실 비후를 일으킬 것으로 생각된다. 안지오텐신 전환효소는 안지오텐신 II로의 생성하고 이 안지오텐신 II가 심근세포에 성장인 자로 작용하여 심근세포의 비후 및 증식을 촉진하여 결과적으로 혈액학적 원인 등 이차적인 원인에 독립적으로 심근비후를 일으킬 것으로 생각된다.

3. 비후성 심근증의 유전적 양상

비후성 심근증은 물리적인 외부요인 없이 좌심실의 특정부위에 비후를 일으키는 질환으로서 약 절반에서 가족력이 동반하며 주로 상담의 사례로 유전된다. 최근에 분자생물학적 연구 결과 심근을 구성하는 단백질의 유전자에 이상이 있음을 밝혀냈다. 즉, 염색체 14q1의 beta-MHC 유전자, 염색체 1q3의 심근 troponin T 유전자, 염색체 15q2의 alpha-tropomyosin 유전자 등이다. 그 밖에 염색체 11번과 7번의 두 부위도 관여되어 있음을 보고되었다.

비후성 심근증은 유전적 질환으로 볼 때 송치로운 점은 대립 유전자를 불균일성(allelic heterogeneity)을 나타내는 점이다. 즉, 한 유전자에서 일어나는 여러가지의 돌연변이가 이 질환을 일으킬 수 있다. 예를 들면 beta-MHC 유전자에서는 30가지 이상의 missense mutation(과적 돌연변이)가 보고되었다. 따라서 전체적으로 보면 100가지 이상의 유전자에서 고유한 변형이 심근비후를 일으켜 결과적으로 비슷한 임상양상을 나타내게 된다. 비후성 심근증은 또한 유전자와의 결합부위에 따라 질환의 자연 결과 및 예후는 다르며 좌심실 비후의 정도와 질환의 자연 결과와는 무관함이 알려져 있다. 즉, 부정맥 및 급사가 좌심실비후가 심하지 않아도 약이나 향연되지 않으며 비후가 심하지 않아도 급사의 위험성이 높은 유전자의 결합이 있는 화자군 비후가 심하거나 비교적 급사가 적은 유전자의 결합과 환자군 예후가 좋다고 보고들이 있다. 심지어 좌심실 비후의 정도는 같은 유전자의 이상이 있는 가족 내의 환자들 사이에서도 매우 다양하며 비후가 없이 정상인 수도 있음을 알려져 있다.

1993년 미국의 Marian 등은 β myosin heavy-chain의 유전자에 돌연변이의 번도가 높다고 알려진 돌연변이가 있는 가족의 비후성 심근병증 환자에서 D/D형이 높게 많음을 보고하였다. 본 연구의 결과와 함께 생
4. 본 연구의 임상적인 측면

좌심실비후는 심혈관질환의 예후에 중요하다. 좌심실비후가 있는 군에서 사망률이 역시 높으며36) 비후성 심근증에서도 좌심실질량지수가 높은 군에서 유사의 위험성 및 사망률이 높다고 보고가 있다36). 또한 좌심실비후는 급성심장마비의 독립 위험인자로 생각되고 있다37). 따라서 좌심실비후에 영향을 주는 안지오텐신 유전형은 임상적으로 중요한 의의를 지닌다고 보아야 할 것이며 현재 심혈관질환 열어도 향후의 발병 가능성을 기반으로 하여 예후 지표를 제공함으로서 앞으로는 이러한 유전자의 지표에 따라 다른 영향을 줄 수 있는 적극적으로 조절해야 하는가를 결정하는 데 도움이 될 것으로 생각된다.

또한 저자의 결과는 단지 우리나라에서 비후성 심근증 환자의 안지오텐신 유전자소유자의 유전적 다양성을 처음 밝힌 것 뿐만 아니라 어떤 유전자 유전형에 의한 것으로 생각되는 양상의 비후성 심근증의 발현 양상에 다른 유전자의 확인에 의하여 영향을 받는다는 것을 보였는데에 의의가 있다고 하겠다.

5. 연구에서의 제한점

본 연구에서는 심근 비후의 정도는 정상 대조군 및 좌심실비후군은 심전도로 측정하였고, 비후성 심근증군은 심초음파로 측정하였다. 심전도로부터 좌심실질량지수를 구하는 방법은 Rautaharju 등이 이전에 심초음파로 구한 값과 비교하여 관관관계가 있는 식을 사용하였으며 비후성 심근증 환자군에서 사용한 Wigle의 방법을 자기공명영상으로 구한 좌심실량과 비교하여 유의하다고 검증된 방법이다38). 그러나 심전도로 좌심실질량지수를 구하는 방법은 다수를 대상으로 좌심실비후 여부를 구하는 경우에는 유용한 방법이지만 개개인의 좌심실질량을 정확히 평가할 수 있는 방법은 아니며 Wigle의 방법은 평가방법이 반정밀적인 한계점이 있다. 추가 본 연구 결과는 검증하기 위해서는 다수의 연구 대상군에 대하여 보다 정확하게 좌심실질량을 평가할 수 있는 방법을 적용하여야 할 것이다.

요 약

연구배경:
비후성 심근증에서 좌심실비후의 부위와 정도는 다양하다. 이 질환에서 좌심실비후에 관련 있는 것으로 생각되는 안지오텐신 전환효소(ACE) 유전자형의 유전적 다양성의 영향 및 이러한 유전적 다양성이 비후성 심근증의 비후의 발현 정도와는 어떠한 관련이 있는가 알아보고자 하였다.

방 법:
총 172명(37명의 비후성 심근증군, 26명의 혈압이 정상인 좌심실 비후군, 19명의 혈압이 높은 좌심실 비후군, 79명의 정상 대조군)을 대상으로 하였다. 심전도에서 Rautaharju 식으로 좌심실질량지수를 구하여 남자는 131g/m^2이상, 여자는 110g/m^2 이상을 좌심실 비후가 있는 것으로 정의하였다. 각 환자의 방향향을 토대로 단핵구중에서 genomic DNA를 추출하고 중합효소 연쇄 반응(Polymerase chain reaction, PCR)로 ACE I(in-
sertion), D(deletion) 유전자형을 확인하였다.

결 과:
비후성 심근증군 및 혈압이 정상인 좌심실비후군에서 D/D 형의 빈도가 정상 대조군에 비하여 유의하게 높았으며(0.231, 0.243 vs 0.076, p<0.05 by Fischer's exact test) 다른 군 사이에는 유의한 유전자의 빈도의 차이가 없었다. 비후성 심근증군 내에서 심전도로 구한 좌심실질량지수와 심초음파에서 Wigle의 방법으로 평가한 좌심실비후의 정도가 D/D 유전자형에서 다른 유전형보다 유의하게 높았다(259.8±156.4g/m^2 vs 176.6±56.2g/m^2, p<0.05, t-test, 7.83±2.4 vs 5.35±1.9, p<0.05, Mann-Whitney test). 또한 비후성 심근증군에서 좌심실질량지수 및 Wigle의 좌심실비후 score는 I/L, I/D, D/D로 갈수록 증가하는 경향을 보였다.

결 론:
ACE 유전자 D allele는 비후성 심근증과 고혈압 등의 다른 이차적인 원인이 없는 좌심실 비후에서는 심근비후를 일으키는 기전에 관여할 것으로 생각된다.

References
1) Wigle ED, Rakowski H, Kimball B: Hypertrophic
2) Geister-Lowerance AA, Kass S, Tanigawa G: A molecular basis for familiar hypertrophic cardiomyopathy: a beta-cardiac myosin heavy chain gene miss-
3) Thierfelder L, Watkins H, MacRae C: alpha tro-
pomyosin and cardiac troponin T mutations cause
familial hypertrophic cardiomyopathy: as disease of
the sarcomere. Cell 77: 701-702, 1994
4) Carrier L, Hangstenberg C, Beckmann JS: Mapping of a novel gene for familial hypertrophic
cardiomyopathy to chromosome 11. Nature Genet 4: 311
-313, 1993
5) MacRae C, Ghasia N, McGarry K: Familial hy-
pertrophic cardiomyopathy with Wolff-Parkinson-White
syndrome maps to a locus on chromosome 7q3. Circulation 90(suppl I): I-25, Abstract, 1994
6) Epstein ND, COhn GM, Cyran F: Differences in
clinical expression of hypertrophic cardiomyopathy
associated with two distinct mutations in the beta-myosin
heavy chain gene: a 908Leu->Val mutation and a
7) Fananapazir L, Epstein ND: Genotype-phenotype cor-
correlations in hypertrophic cardiomyopathy: insights
provided by comparisons of kindreds with distinct and
identical beta-myosin heavy chain gene mutation. Circu-
lation 89: 22-32, 1994
8) Sadoshima J-L, Izumo S: Molecular characteriza-
tion of angiotensin II-induced hypertrophy of cardiac
myocytes and hyperplasia of cardiac fibroblasts: critical
role of the AT1 receptor subtype. Circ Res 73: 413-423, 1993
9) Farhy RD, Ho KL, Carretero OA, Scidi A: Kinins
mediate the antiproliferative effect of ramipril in rat
10) Schunkert H, Dzau VJ, Tang SS: Increased rat car-
diac angiotensin converting enzyme activity in mRNA
expression in pressure overload left ventricular hyp-
11) Rigat B, Hubert C, Alhenc-Gelas F: An insertion/
deletion polymorphism in the angiotensin I-converting
enzyme gene accounting for half of the variance of
12) Danser AH, Schalekamp MA, Bax WA: Angioten-
sin-converting enzyme in the human heart. Effect of
the deletion/insertion polymorphism. Circulation 92:
1387-1388, 1995
13) Iwai N, Ohnichi N, Nakamura Y: DD genotype
of the angiotensin-converting enzyme gene is a risk
factor for left ventricular hypertrophy. Circulation 90:
2622-2628, 1994
14) Rautaharju PM, LaCroix AZ, Savage DD: Electrocardiographic estimate of left ventricular mass vs-
rus radiographic ardiac size and the risk of car-
diovascular disease mortality in the epidemiologic fol-
low-up study of the first national health and nutrition
15) Wolf HK, Hurggraf GW, Cuddy E: Prediction of
left ventricular mass from the electrocardiogram. J. of Electrocardiology 24(2): 121-127, 1991
cardiomyopathy: the importance of the site and exten-
t of hypertrophy: a review. Prog Cardiovasc Dis 28:
1-83, 1985
17) Schunkert H, Hense HW, Holmer SR: Association
between a deletion polymorphism of the angiotensin-
converting-enzyme gene and left ventricular hypert-
18) Kupari M, Perola M, Koskinen P: Left ventricular
size, mass, and function in relation to angiotensin-
19) Iwai N, Phmichi N, Nakamura Y: DD genotype
of the angiotensin-converting enzyme gene is a risk
factor for left ventricular hypertrophy. Circulation 90:
2622-2628, 1994
20) Lechin M, Miguel A, Omran A: Angiotensin-I con-
verting enzyme genotypes and left ventricular hyper-
21) 이명복 : 김효수 : 숙종민 : 한국인 허혈성 심장질
환에서의 야자오델린 전환효소 유전자의 유전적
다형성(Genetic Polymorphism)의 양상. 수한기 26(1):
5-13, 1996
22) Sadoshima J-L, Izumo S: Molecular characteriza-
tion of angiotensin II-induced hypertrophy of cardiac
myocytes and hyperplasia of cardiac fibroblasts: critical
role of the AT1 receptor subtype. Circ Res 73: 413-423, 1993

- 1113 -

32) Cooper RS: Left ventricular hypertrophy is associated with worse survival independent of ventricular function & number of coronary arteries severely narrowed. Am J Cardiol 65: 441, 1990

