지연 후탈분극의 발생에 미치는 α-아드레날린성 수용체의 역할*

Abstract

Role of α-Adrenergic Receptors in the Development of Delayed Afterdepolarization

Jae-Ha Kim, M.D., Kyung-Chae Joo, M.D., Jeong-Min Ju, D.V.M.,
Hyun Kook, M.D., Dong-Ho Shin, D.V.M.,*** Jeong-Gwan Cho, M.D.**

Departments of Pharmacology and Internal Medicine,** Chonnam University Medical School,
Department of Pharmacology, Chonnam University College of Veterinary Medicine,***
Kwangju, Korea

Background: To investigate the role of α-adrenergic receptors in the development of delayed afterdepolarization, the effect of α-adrenoceptor stimulation and blockade on ouabain-induced delayed afterdepolarization (DAD) was examined in rabbit heart Purkinje fibers.

Methods: Purkinje fibers, taken from adult rabbit (1.8 – 2.0 kg) heart anesthetized with pentobarbital, were mounted in a Luizcile chamber and superfused with Tyrode’s solution. The transmembrane potentials were measured by the conventional microelectrode technique while the fibers were being stimulated with rectangular pulses of 50% above threshold voltage. The delayed afterdepolarizations were induced by overdrive excitation in the presence of ouabain.

Results: Delayed afterdepolarizations were not observed during superfusion of the control Tyrode’s solution containing propranolol (5 × 10^{-7} M). However, the addition of ouabain in the presence of propranolol elicited DADs which were dose-, time- and drive cycle length-dependent.

Phenylephrine (PE: 10^{-7} M), an α-adrenoceptor agonist, potentiated the ouabain-induced DAD during the initial superfusion (for 10 or 20 min) of the test Tyrode’s solution. However, it was followed by attenuating-effects after a superfusion time of 50 to 60 min. Both effects showed ouabain dose-dependence.

Ouabain (2 × 10^{-7} M), in the presence of propranolol, depolarized the maximum diastolic potential and shortened the action potential duration, and the addition of PE (10^{-7} M) did not affect the characteristics of action potential except a decrease in velocity of phase 0 depolarization.

Prazosin, an α_1-adrenoceptor antagonist, inhibited the PE’s enhancing effects of ouabain-induced DAD at 20 min superfusion, but did not affect the attenuating-effects of PE at 60 min superfusion. On the other hand, yohimbine, an α_2-adrenoceptor antagonist, did not affect the PE’s DAD potentiating-effects at 20 min superfusion, but inhibited the attenuating-effects of

*본 논문의 내용은 일부 1994년도 전남대학교병원 임상연구소 연구비에 의하여 이루어진 것임.
서론

부정맥은 임상적으로 혼합급 유사의 원인이 되는 질환 중의 하나이다. 특히 심근경색 또는 허혈상태에 있거나 희혈된후에 이어나는 심실성 부정맥은 생명을 위협하는 경우가 많다. 부정맥을 실험실에서 연구하는 것은 쉽지가 않다. 우선 부정맥의 동물 모델을 만들기 어렵고 부정맥을 일으키는 기전에는 여러가지 인자가 복합적으로 작용하기 때문이다. In vitro 부정맥 연구모델로서 비교적 잘 알려진 것에는 triggered activity를 일으키게 하는 지연 후달분극(delayed afterdepolarization)이 있다.

지연 후달분극은 Ca$^{2+}$ 과부하상태에 있는 심장세포에서 활동전위의 재분극화 후 나타나는 막전위의 진동으로서 정상적인 pacemaker 전위인 자발적 이완기 탈분극(spontaneous diastolic depolarization)과는 구별된다.12) 지연 후달분극의 크기가 활동전위의 upstroke를 일으키는 내향성 전류를 활성화시킬 수 있는 정도에까지 도달하면 triggered impulse가 시작되거나 때로는 역차(threshold) 전위에 도달하지 않더라도 활동전위를 trigger하여 부정맥의 한 요인임이 될 수가 있다고 알려져 있다.13)

한편 심장긴장의 대분통을 지배하고 있는 교감신경계의 신경체액성(neurohumoral) 조절 및 심장박동, 특히 부정맥과의 관계는 그동안 광범위하게 연구되어 왔다. 지금까지 관심의 대상이 되어왔던 심장에서의 교감신경성 조절의 대부분은 주로 β-아데날린성의 방식이었다. 즉 심장긴장의 근간이 되는 동방절(snus node)에서 자극의 시각, 전도 그리고 심근의 수축에 대한 β-아데날린성 자극효과가 주요 연구대상이었다. 여기에 비해 α-아데날린계를 통한 교감신경성 조절에 관한 연구는 그다지 많지 않다. 사실 근래에까지도 심근이나 심장의 전도계에 α-아데날린성 수용체의 존재여부자체가 의문시 되었고. 그럼에도 α-아데날린계는 자극의 시작이나 재분극에 영향을 줄 수만큼이나 어떤 종류의 부정맥의 발생과도 관련이 있음을 입증되고 있다4) 5). 다가 나아가 심근이나 전도계의 자극의 시작과 재분극의 조절에 있어서 α-아데날린성 수용체의 아형(subtype)인 α$_2$-수용체보다는 α$_1$-수용체가 더 중요한 역할을 하고 있다는 사실도 알려져 있다9). 고양이의 Purkinje fiber에서 고농도의 Ca$^{2+}$과 β-아데날린성 차단제하에서 α-아데날린성 수용체 차극제에 의한 후달분극과 triggered activity가 발생하고 이것이 α-아데날린성 차단제에 의해서 억제가 된다는 보고17)가 있고, 푸의 Purkinje fiber에서는 propranolol 존재하에서 epinephrine에 의해서 자동작동이 유발되고 이러한 효과가 phentolamine에 의해서 차단되는 것이라 알려져 있다.9). 또한 α-아데날린성 수용체를 차단하면 세포내 Ca$^{2+}$ 농도가 증가하는데 이는 β-수용체 차극제 일어나는 직접적인 내향성 Ca$^{2+}$ 전류에 의한 효과가 아니이고 활동전위기간의 증가에 따른 간격적인 내향성 Ca$^{2+}$ 전류증가에 의한 것이라고 알려져 있다9). 이러한 점으로 이루어 세포내 Ca$^{2+}$ 과부하가 있을때 나타나기 쉬운 지연 후달분극의 발생과 α-아데날린성 수용체가 관련이 있을 것이라고 추측할 수 있다. 다시말하면 α-아데날린성 차단제는 부정맥을 유발하는 효과를 나타내고 α-아데날린성 차단제는 부정맥을 억제하는 효과를 갖는다고 할 수 있다. 지연 후달분극은 부정맥을 일으킬 수 있는 요인중의 하나이므로 α-아데날린성 수용체와 지연 후달분극과의 관계를 연구하는 것은 부정맥의 발생기전을 밝혀내어서 중요한 근거자료가 될 수 있음을 분명하다.

본 연구에서는 가토의 심장에서 절취하여 Purkinje fiber에서, ouabain을 첨가한 Tyrod액 관류시 나타나는 지연 후달분극에 미치는 영향에 대해 α-아데날린성 작동체 및 간극체의 영향을 조사하여 α-아데날린성 수용체와 지연 후달분극의 발생관계를 보면 명확히 밝혀내어 부정맥의 발생기전과 β-아데날린성 수용체의 역할을 구명하고자 하였다.
실험방법

Pentobarbital sodium(50mg/kg, 정맥내)으로 마취한 가토(2kg 내외)의 흉부를 절개하여 심장을 거내후, 95% O₂와 5% CO₂를 혼합한 가스를 bubbling시켜 pH가 7.4로 유지된, 냉 Tyrode액(조성(mM) : NaCl 125, NaHCO₃ 24, KCl 4, NaHPO₄ 1.8, MgCl₂ 0.5, CaCl₂ 2.7, dextrose 5.5)에 넣어 놓고 광학현미경에 서(20~50x) 양심실로부터 Purkinje fiber을 분리하여 silastic base의 Luicite chamber에 고정하고 유리 열교환기를 이용하여 36~37℃로 유지시킨 Tyrode액을 12ml/min의 속도로 관류시켰다. 활동전위를 유도하기 위한 표본의 자극은 자극기(Grass, S48)에 연결한 양극성 은으로 만든 양극 전극도자(bipolar silver electrode : 외경 0.2mm)를 통하여 2~3ms 간의 구형파를 역적 전압의 1.5배로 가하여 시행하였다. 약 1시간이 경과 후 표본이 안정되며 활동전위를 기록하기 위하여 3M KCl을 넣은 conventional 유리미세전극(직류저항 10~30MΩ)을 미세위치조정기(micromanipulator : Brinkmann)를 통하여 세포내에 절리내고 이것을 증폭기(electrometer : WPI 7071A)를 통하여 오실로스코프(Tektronix 5113)에 기록하고 동시에 기록기(Gould 2400)에 기록하였다. Tissue bath는 3M KCl agar bridge와 Ag-AgCl junction을 이용하여 ground에 연결하였다. 활동전위로부터 측정한 변수값 parameter은 phase 0 탐전극의 최대상승속도(ΔV/Δt max : V/sec), 최대이완기 전위(maximum diastolic potential : mV), 활동전위의 크기(action potential amplitude : mV), 50% 또는 90% 재분극시까지의 활 동전위기간(APD₅₀, APD₉₀ : ms), 그리고 자극 후탈본 극의 전위(amplitude : mV)등이었다. dV/dt max은 증폭기의 출력신호를 얻어 증폭기(operational amplifier)를 이용하여 제작한 미분 증폭기에 연결하여 오실로스코프에 기록하였다.

실험은, β-아드레날린성 수용체에 의한 효과를 배제하기 위하여 β-아드레날린성 차단제인 propranolol(2x10⁻⁷M)이 투여된 대조(control) Tyrode액을 관류시키면서 활동전위의 각 변수치 및 자극 후탈본극의 전위를 측정하여 대조군치로 하였다.

자극 후탈본극은 대조 Tyrode액에 ouabain(2x10⁻⁷M)을 첨가하여 관류시키면서 overdrive excitation 방법에 의하여 유도하였다. 이때 자극의 주기간격(drive cycle length : DCL)은 400ms 즉 2.5Hz를 기본으로 하였고, DCL의 크기자SEN 후탈본극의 발전에 미치는 영향을 조사하기 위하여 250(4Hz)부터 800ms(1.25 Hz)까지의 다양한 주기간격으로 하였으며 자극 도중에 2분마다 5초씩 자극을 중단하여 자연 후탈본극의 전위와 위이온 응축(rhythm)을 관찰하였다. 대조 Tyrode액에 α-아드레날린성 길항제인 prazosin 또는 yohimbine을 첨가하여 관류시키면서 활동전위의 각 변수치 및 자극 후탈본극의 전위를 측정하여 이를 길항제의 대조군치로 하였다. α-아드레날린성 수용체의 자극효과를 측정하기 위해서는 Tyrode액에 phenylephrine 10⁻⁷M을 단독으로 첨가하거나 prazosin 또는 yohimbine과 함께 첨가한 시험(test) Tyrode액을 관류시켜 대조군에서 측정한 자연 후탈본극의 전위 및 활동전위의 변수값들과 비교하였다.

결 과

1. Ouabain에 의한 유발된 자연 후탈본극

β-아드레날린성 수용체의 작용이 자연 후탈본극의 발전에 미치는 영향을 배제하고자 본 연구의 모든 Tyrode액에는 β-아드레날린성 수용체 길항제인 propranolol 5x10⁻⁷M을 첨가하였고, 본 연구에서 Tyrode액이란 함은 propranolol만을 함유한 경우에 해당한다. Tyrode액은 관류시에는 어떠한 triggered activity도 나타나지 않았다(Fig. 1. 3 및 4). 그러나 여기에 ouabain(2x10⁻⁷M)을 첨가한 Tyrode액을 관류시에는 400ms drive cycle length(DCL) 자극후 10분에 2.7±0.73, 20분에 4.4±1.10 그리고 60분에 5.1±1.35mV(각 5배)의 자연 후탈본극이 나타났다(Fig. 1. 2). 첨가한 ouabain의 능도가 자연 후탈본극의 발전에 미치는 영향을 보이기 위하여 각 용량의 ouabain 첨가 Tyrode액을 관류시켜 20분경과시의 자연 후탈본극의 크기를 조사하였는 바,
Fig. 1. Effects of ouabain (OuA; \(2 \times 10^{-7}\)M) alone and with phenylephrine (PE; \(10^{-7}\)M) in the presence of propranolol (5\(\times 10^{-7}\)M) on the development of delayed afterdepolarization. The drive cycle length of stimuli was 400ms (2.5 Hz). The delayed afterdepolarization was not observed in the propranolol alone control Tyrode’s solution.

Fig. 2. Effects of phenylephrine (PE; \(10^{-7}\)M) on the amplitude of ouabain (2\(\times 10^{-7}\)M)-induced delayed afterdepolarization in the presence of propranolol (5\(\times 10^{-7}\)M) at the time (min) after superfusion of the test Tyrode’s solution. The drive cycle length of stimuli was 400ms (2.5 Hz). Each bar shows mean \(\pm\) S.E.M. obtained from 5 to 6 experiments. *: \(p<0.05\) vs ouabain-group.

Fig. 3. Representative illustration of dependency of drive cycle length (DCL) of stimuli on the amplitude of ouabain (2\(\times 10^{-7}\)M)-induced delayed afterdepolarization in the presence of propranolol (5\(\times 10^{-7}\)M) at 20 min after superfusion of the test Tyrode’s solution.

Fig. 4. Influence of drive cycle length of stimuli on the amplitude of delayed afterdepolarization in the presence of propranolol (5\(\times 10^{-7}\)M) at 20 min after superfusion of the test Tyrode’s solution. Value and vertical bar shows mean and S.E.M. obtained from 5 to 6 experiments. The concentration of superfused ouabain was 2\(\times 10^{-7}\)M and that of phenylephrine (PE) \(10^{-7}\)M, respectively.

ouabain \(10^{-7}\)M 절차시 2.7±0.45, 2\(\times 10^{-7}\)M 절차시 5.1±1.20 그리고 \(5 \times 10^{-7}\)M 절차시 6.7±0.90mV로서(각 5례) 자극한 ouabain의 용량에 비례하여 증가하는 경향을 보였다(Fig. 5, 6). 또한 자극하는 DCL이 지연 후탈분극의 발생에 미치는 영향을 알아보기 위해 DCL을 250(4Hz)부터 800ms(1.25Hz)까지 증가 시키면서 각 DCL 지극 후 20분간에 나타나는 지연 후탈 분극의 점막을 조사하였는데, 250ms시에 5.2±0.91, 400ms시에 5.0±1.22, 500ms시에 2.9±0.96 그리고 800ms시에 1.85±0.32(각 5례)로서 DCL의 크기에 비례해서 감소하는 경향을 보였다(Fig. 4).

2. Ouabain-유발성 지연 후탈분극에 미치는 phenylephrine(PE)의 영향

α-아드레날린성 수용체 작동제가 지연 후탈분극의 발생에 미치는 영향을 알아보고자 phenylephrine(PE) \(10^{-7}\)M을 ouabain \(2 \times 10^{-7}\)M이 들어있는 Tyrode액에 첨가하고 400ms DCL지극 후 나타나는 지연 후탈분극의 점막을 조사하였다. 10분치에서는 5.7±0.87mV로서 ouabain만에 의한 지연 후탈분극의 약 2.1배, 20분치에서는 9.6±1.35mV로서 약 2.2배 증가하였고 60분치에서는 2.6±0.37mV(각 5례)로서 오히려 1/2경도로 감소하는 경향을 보였다(Fig. 2). Ouabain과 PE(10\(^{-7}\)M)을 함께 첨가한 Tyrode액 관류시에는 나타나는 지연 후탈분극의 경향을 보면, ouabain만에 의한 지연 후탈분극의 약 2.1배, 20분치에서는 9.6±1.35mV로서 약 2.2배 증가하였고 60분치에서는 2.6±0.37mV(각 5례)로서 오히려 1/2경도로 감소하는 경향을 보였다(Fig. 2). Ouabain과 PE(10\(^{-7}\)M)을 함께 첨가한 Tyrode액 관류시에는 나타나는 지연 후탈분극의 경향은 ouabain만에 의한 지연 후탈분극의 약 2.1배, 20분치에서는 9.6±1.35mV로서 약 2.2배 증가하였고 60분치에서는 2.6±0.37mV(각 5례)로서 오히려 1/2경도로 감소하는 경향을 보였다(Fig. 2). Ouabain과 PE(10\(^{-7}\)M)을 함께 첨가한 Tyrode액 관류시에는 나타나는 지연 후탈분극의 경향은 ouabain만에 의한 지연 후탈분극의 약 2.1배, 20분치에서는 9.6±1.35mV로서 약 2.2배 증가하였고 60분치에서는 2.6±0.37mV(각 5례)로서 오히려 1/2경도로 감소하는 경향을 보였다(Fig. 2). Ouabain과 PE(10\(^{-7}\)M)을 함께 첨가한 Tyrode액 관류시에는 나타나는 지연 후탈분극의 경향은 ouabain만에 의한 지연 후탈분극의 약 2.1배, 20분치에서는 9.6±1.35mV로서 약 2.2배 증가하였고 60분치에서는 2.6±0.37mV(각 5례)로서 오히려 1/2경도로 감소하는 경향을 보였다(Fig. 2). Ouabain과 PE(10\(^{-7}\)M)을 함께 첨가한 Tyrode액 관류시에는 나타나는 지연 후탈분극의 경향은 ouabain만에 의한 지연 후탈분극의 약 2.1배, 20분치에서는 9.6±1.35mV로서 약 2.2배 증가하였고 60분치에서는 2.6±0.37mV(각 5례)로서 오히려 1/2경도로 감소하는 경향을 보였다(Fig. 2). Ouabain과 PE(10\(^{-7}\)M)을 함께 첨가한 Tyrode액 관류시에는 나타나는 지연 후탈분극의 경향은 ouabain만에 의한 지연 후탈분극의 약 2.1배, 20분치에서는 9.6±1.35mV로서 약 2.2배 증가하였고 60분치에서는 2.6±0.37mV(각 5례)로서 오히려 1/2경도로 감소하는 경향을 보았다.
극은 250 ms시에 10.9±1.3, 400ms시에 9.6±0.95, 500ms시에 6.1±1.3, 800ms시에 2.5±0.38mV로서 ouabain(2×10^-7M)만을 첨가한 Tyrode액 관류시의 비추가로 DCL의 크기에 비해시에 감소하는 경향을 보였고, ouabain만을 첨가한 Tyrode액 관류시에 비하여 각각 2.1, 1.9, 2.1 그리고 1.2배 증가하였다(Fig. 4). 또한 PE의 ouabain-induced 지연 후탈분극 증가 또는 감소효과가 대조 Tyrode액에 첨가한 ouabain의 농도에 의해서 어떻게 영향을 받는지를 알아보기 위하여 400ms DCL 주극으로, 10^-7, 2×10^-7 그리고 5×10^-7 M ouabain의 각 용량에 PE 10^-7M을 첨가한 시험 Tyrode액을 관류하면서 시간의 경과에 따른 지연 후탈분극의 발생을 조사하였다. Tyrode액 관류후 20분 경과시의 PE에 의한 ouabain-induced 지연 후탈분극 증가 효과 및 60분경과시의 ouabain-induced 지연 후탈분극 감소효과는 ouabain의 용량에 의존적이었다(Fig. 5, 6).

3. 활동전위 특성에 미치는 ouabain의 영향

본 연구에서 β-아드레날린성 수용체의 효과를 뺏게하기 위하여 Tyrode액에 첨가한 propranolol 5×10^-7M은 400ms DCL 주극으로 관류 20분후 측정한 활동전위기간을 단축시키는 경향을 보였으나 대조군차에 비하여 유의한 차이는 없었고 그 이외의 다른 변수값에는 영향을 미치지 않았다. Propranolol 존재하에서도 ouabain 2×10^-7M은 관류 20분후 측정한 활동전위 변수값은, 최대이완기 전위(MDP)의 증가, phase 0 탈분극의 최대상승속도(dV/dt_max)와 활동전위의 크기(APA)의 감소, 그리고 50% 재분극시까지의 활동전위 기간(APD_50)의 단축등이 있다.(각 P<0.05)(Table 1).

4. 활동전위 특성에 미치는 phenylephrine의 영향

Propranolol 5×10^-7M이 존재하는 Tyrode액에 첨가한 PE 10^-7M은 400 ms DCL 주극후 20분에 측정한 활동전위 변수값중 50% 및 90% 재분극시까지의 활동전위 기간(APD_50 및 APD_90)을 단축시켰으나(각 P<0.05) 그 이외의 변수값에는 영향을 미치지 않았다(Table 1).
Table 1. Effects of ouabain and phenylephrine (PE) on action potential characteristics of Purkinje fiber in rabbits

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Ouabain (2×10^{-7}M)</th>
<th>PE (10^{-7}M)</th>
<th>Ouabain+PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDP (mV)</td>
<td>-86 ± 0.8</td>
<td>-82 ± 0.9*</td>
<td>-84 ± 1.4</td>
<td>-83 ± 1.4</td>
</tr>
<tr>
<td>dV/dt_{max} (V/sec)</td>
<td>425 ± 8.5</td>
<td>419 ± 10.5</td>
<td>431 ± 9.4</td>
<td>396 ± 7.9*</td>
</tr>
<tr>
<td>APA (mV)</td>
<td>115 ± 2.1</td>
<td>108 ± 1.2*</td>
<td>113 ± 2.9</td>
<td>111 ± 2.3</td>
</tr>
<tr>
<td>APD_{50} (ms)</td>
<td>149 ± 4.7</td>
<td>134 ± 4.1*</td>
<td>165 ± 4.6*</td>
<td>151 ± 5.1</td>
</tr>
<tr>
<td>APD_{90} (ms)</td>
<td>31 ± 7.8</td>
<td>223 ± 8.9</td>
<td>255 ± 6.2*</td>
<td>242 ± 7.2</td>
</tr>
</tbody>
</table>

Numerals are mean ± SE from 5 to 6 preparations at 20 min after superfusion with the drugs. MDP = maximum diastolic potential. dV/dt_{max} = maximum upstroke velocity of phase 0 depolarization. APA = action potential amplitude. APD_{50}, APD_{90} = action potential duration at 50%, 90% repolarization respectively.

*p<0.05, by Student's t-test as compared to the control

Ouabain 2×10^{-7}M과 PE 10^{-7}M을 함께 첨가해서 관류했을시 phase 0 탈분극의 최대상승속도(dV/dt_{max})는 propranolol만이 존재하는 Tyrode액 관류시에 비하여 감소하였고 Tyrode액에 ouabain만을 첨가해서 관류했을시에 비해서도 감소하였으나, 그 이외의 다른 변수값은 대조군치에 비하여 유의한 차이가 없었다(Table 1).

5. Phenylephrine의 ouabain-induced 지연 후탈분극 증가 또는 감소효과에 미치는 prazosin 또는 yohimbine의 영향

α₁-아드레날린성 수용체 길항제인 prazosin과 α₂-아드레날린성 수용체 길항제인 yohimbine의 PE의 ouabain-induced 지연 후탈분극 증가 및 감소효과에 어떻게 영향을 미치는지를 조사하였다. 이들 두 약물을 첨가한 Tyrode액을 15분 관류후, 다시 ouabain 2×10^{-7}M과 PE 10^{-7}M을 첨가한 Tyrode액을 관류하면서 400ms DCL 자극 시간의 경과에 따라 나타나는 지연 후탈분극의 크기를 조사한 바 20분경과시 나타나는 PE의 ouabain-induced 지연 후탈분극 증가효과는 prazosin 10^{-7}M 전처리시에는 약 23% 그리고 5×10^{-7}M 전처리시에는 약 60%(P<0.01) 감소하였으나 yohimbine 10^{-7}M 전처리시에는 영향을 받지 않았다. 그러나 60분 경과시 나타나는 PE의 ouabain-induced 지연 후탈분극 감소효과는 prazosin 10^{-7}M 및 5×10^{-7}M 전처리시에는 영향을 받지 않았으나 yohimbine 10^{-7}M 전처리시에는 약 70%(P<0.05) 증가하였다(Fig. 7).

6. 활동전위 특성에 미치는 prazosin 또는 yohimbine의 영향

α₁ 및 α₂-아드레날린성 길항제의 첨가가 활동전위 특성에 미치는 영향을 알아보고자 ouabain 2×10^{-7}M과 PE 10^{-7}M이 들어 있는 Tyrode액에 prazosin 10^{-7}M, 5×10^{-7}M 또는 yohimbine 10^{-7}M을 첨가하여 관류후 20분경과시에 활동전위의 변수값을 측정하였다. Prazosin 10^{-7}M 또는 yohimbine 10^{-7}M을 첨가한 Tyrode액 관류시에는 활동전위 변수값에 유의한 변화가 없었다. Prazosin 5×10^{-7}M을 첨가한 Tyrode액 관류시 최대 이완전위(MDP)는 유의하게 감소되었으나(P<0.05) 그 이외의 변수값은 영향을 받지 않았다(Table 2).

고 안

In vitro에서 부정맥 발생기전 연구모델중 하나인 지연 후탈분극은 여러가지 실험조건에서 볼 수 있다. 즉 심장표본에 digitalis제제를 투여하거나...11,12,13,14,15,16, 표
Table 2. Effects of prazosin or yohimbine on action potential characteristics of Purkinje fiber under treated with ouabain (Oua) and phenylephrine(PE) in rabbits

<table>
<thead>
<tr>
<th></th>
<th>Oua+PE</th>
<th>Oua+PE+Prazosine (5×10⁻⁶M)</th>
<th>Oua+PE+Yohimbine (10⁻⁶M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDP(mV)</td>
<td>-83 ± 1.4</td>
<td>-85 ± 1.1</td>
<td>-87 ± 0.8*</td>
</tr>
<tr>
<td>dV/dt_max(V/sec)</td>
<td>396 ± 7.9</td>
<td>403 ± 8.8</td>
<td>392 ± 10.1</td>
</tr>
<tr>
<td>APA(mV)</td>
<td>111 ± 2.3</td>
<td>110 ± 1.9</td>
<td>112 ± 2.9</td>
</tr>
<tr>
<td>AP D₅₀ (ms)</td>
<td>151 ± 5.1</td>
<td>152 ± 5.4</td>
<td>149 ± 4.1</td>
</tr>
<tr>
<td>AP D₅₀ (ms)</td>
<td>242 ± 7.2</td>
<td>238 ± 6.9</td>
<td>239 ± 6.4</td>
</tr>
</tbody>
</table>

Legends are the same as in the Table 1

*p<0.05, by Student's t-test as compared to the Oua+PE group

본월전환하는 Tyrode액의 ion 조성을 Na⁺-free, Ca²⁺-rich17) 또는 K⁺-free, Ca²⁺-rich18,19로 바꾸어 관류시간 경우에 나타나는 것으로 알려져 왔다. 본 연구에서 가토의 Purkinje fiber 표본에 digitalis체제인 ouabain을 첨가한 Tyrode액 관류시 자연 혈관분극이 발생하였으며 이 자연 혈관분극의 전위는 ouabain의 용량이 증가함에 따라 또한 ouabain의 관류시간이 증가함에 따라 증가하였고 전기자극의 주극전이가 줄어들면서 증가하는 양상이었다(Fig. 1~6).

Ouabain의 세포에서의 작용은 세포막의 Na⁺-K⁺ pump를 억제하여 세포내 Na⁺ 농도를 증가시키는 것이 알려져 있다20,21). 이렇게 해서 증가된 (Na⁺, 때문에 세포막에서의 Na⁺ driving force가 감소하게 되고 결국 Na⁺-Ca²⁺ 교환체에 의한 Ca²⁺의 세포외로의 배출이 감소하게 되어 결과적으로 [Ca⁺]가 증가하게 되고 2가지로 sarcoplasmic reticulum의 Ca²⁺ 유리를 자극하는 (Ca²⁺-induced Ca²⁺ release) 복합적인 작용에 의하여 세포내 Ca²⁺ 과부하 상태가 유발된다고 알려져 있다22,23). Kass등23)는 이렇게 해서 증가된 세포내 free Ca²⁺이 Na⁺ 또는 K⁺의 세포막 투과성을 증가시키며 일시적인 내향전류(Iₙ)가 호르게 되고 이 내향전류가 자연 혈관분극을 유발하는 원인이 된다고 하였다. 즉 digitalis제계 관류시 나타나는 자연 혈관분극은 결국 세포내 Ca²⁺농도의 증가와 밀접한 관련이 있으며, 이는 인위적으로 Ca²⁺의 농도를 증가시킨 Tyrode액을 표본에 관류시켰을때 나타나는 자연 혈관분극 발생현상과 일맥상통한다고 할 수 있다. 세포내 free Ca²⁺의 증가가 Na⁺ 또는 K⁺의 세포막 투과성을 증가시키는 원인에 대해서는 잘 알려져 있지 않지만 Colquhoun등25)은, 배양한 심근세포에서, patch-clamp 방법을 이용하여 세포내 Ca²⁺의 증가에 의해서 활성화되는 내향성 전류를 발견하고, 이것이 바로 자연 혈관분극 발생의 원인이 될 수 있으나 이 내향성전류는 막전위와는 무관하다고 하였다. 그러나 본 연구결과에서 ouabain(2×10⁻⁷M)이 활동전위의 변수중 최대내극전위(MDP)를 증가시킨 점, 즉 막전위의 탈분극 현상(Table 1)은 ouabain에 의한 자연 혈관분극의 발생전위에 막전위의 변동이 일부 관여할 것임을 시사하고 있다. 자극하는 pulse의 drive cycle length(DCL)와 ouabain-induced 자연 혈관분극의 크기가 반비례하는 본 연구의 결과는(Fig. 3, 4) 아마도 DCL과 세포내 Ca²⁺ 노도간에 서로 반비례 관계가 있는 것과 일치하는 것 같다. 즉 자극의 반도수가 증가하면 세포내 Ca²⁺ 농도가 증가한다는 연구결과22,25,27)가 이를 통합한다. 한편 β-아데날린성 지차단제인 propranolol 혼합에서 α-아데날린성 수용체 작동제인 phenylephrine(10⁻⁷M)은 관류 10분 또는 20분 경과시에는 ouabain-induced 자연 혈관분극의 크기를 증가시켰고 관류 60분경과시에는 감소시켰으며(Fig. 2) 이러한 증가 및 감소는 ouabain의 용량에 의존적이었다. (Fig. 5, 6). 이상에서 β-아데날린성 수용체가 부정맥을 일으킨다는 사실은, 고양이의 Purkinje fiber 표본에서 norepinephrine이 세포내 Ca²⁺ 과부하상태에서 자연 혈관분극이나 triggered 활동전위를 유도하며 이러한 현상이 α-아데날린성 수용체 차단제인 prazosin에 의해서는 거의 영향을 받지 않으나 β-아데날린성 수용체 차단제인 propranolol에 의해서는 억제된다는 연구결과에 의해 이미 증명되어 있다. 심장의 교감신경계는 α와 β-아데날린성 양수용체에 의해서 억제되고 있으나 β-아데날린성 수용체의 역할이 α에 비해서 활동하므로 그동안 α-아데날린성 수용체의 역할은 거의 무시되어 왔다. 그러나 근래에 심장의 활동성 조절에 α-아데날린성 수용체가 상당한 역할을 하고 있다.
는 연구결과들이 나오고 있다. 다시 말하면 α-아드레나
날라성 기전이 β-아드레날린성 기전의 우세한 역할에
가리워져 나타나지 않은 것으로 추측된다. 본 연구결과
에서 propranolol 존재하에서 phenylephrine가 oua-
bain-induced 차단된 낙후분극의 전위를 증가 또는 감소
시켰고 이러한 현상이 차단의 drive cycle length의 크
기에 반비례하여 나타난 점(Fig. 4)등도 이러한 사실을
증명하고 있다.
α-아드레날린성 수용체 차단제가의 차단이 활성중에서
기전으로는 우선 α-아드레날린성 수용체 작용제가 활성중의
기간을 연장시킬 수 있다는 점이다.
29,30,31. 즉 낙후분극의 기간이 길어지면 triggered ac-
tivity가 나타날 수 있는 가능성이 그 뒤를 따라 있다고
할 수 있다. 본 연구에서도 phenylephrine(10^{-5}M)이
50% 및 90% 낙후분극개시의 활성중기간(APD 50
및 APD_{90})을 유의하게 증가시켰고, 이러한 증가가 prazo-
sin 전처리에서는 나타나지 않는 것으로 미루어 알 수
있다(Table 1 및 2). 또한 다른 기전으로는 α-아드레날린
성 수용체 차단제가 제 2차 전립을 통해서 세포내의
Ca^{2+} 유입을 증가시키고, 결과적으로 세포의 Ca^{2+}
파부하상태를 가저오게 해서 차단 후분극이의 triggered activity를 유발한다는 것이다. 실제로 혈항이나
제관류령 세포내 Ca^{2+} 파부하 상태를 초래하여 부정맥
을 유발할 수 있는 경우에 prazosin이나 phentol-
amine 같은 α-아드레날린성 수용체 차단제들이 Ca^{2+} 파
부하를 억제하고 부정맥의 발생빈도를 낮추다는 보고34,
35,36,37)들이 있다. 본 연구에서, phenylephrine 장기 관
류후(60분)에는 단기관류(10분 또는 20분)시와는 달리
ouabain-induced 차단 후분극이 오히려 감소하였고 이
러한 감소향상은 yohimbine 전처리에 의해서 억제되
어 나타난 점(Fig. 7)은 매우 흥미로운 사실이다. α-아
드레날린성 수용체는 α_{1}과 α_{2} 아형(subtype)으로 나뉘
어지고 prazosin은 비교적 α_{1} 아형에, 그리고 yohim-
bine는 α_{2} 아형에 선택적인 것으로 미루어 단기관류시
의 ouabain-induced 차단 후분극 증가현상은 α_{1}, 그
리고 장기관류시의 감소현상은 α_{2}-아드레날린성 수용체
가 관여한다고 생각할 수도 있으나 무엇이 이처럼 수용
체의 선택성이 박에게 하는지는 본 연구의 결과만으로는
알 수 없고 향후 더 추구해 보완할 일인것 같다.
결과적으로 심장의 α-아드레날린성 수용체는 차단 후
분극이나 triggered activity를 일으키고 따라서 혈혈
또는 재관류시와 같은 세포내 Ca^{2+} 파부하설의 복합적인
상태에서 부정맥의 유발에 중요한 역할을 하고 있음을
분명하게 할 수 있다. 따라서 Ca^{2+} 파부하 상태에서
나타나는 부정맥의 치료는 α-아드레날린성 특이 prazo-
sin과 같은 α_{1}-아드레날린성 수용체 차단제의 사용을
고려해 볼 필요가 있을 것이다.

요약

연구배경 및 방법:

In vitro에서 부정맥 발생기전의 연구모델이며 triggered activity를 일으키는 차단 후분극의 발생과
α-아드레날린성 수용체와의 상관관계를 규명하고자, 가
토의 상장으로부터 얻은 Purkinje fiber에서 3M KCl
의 conventional 미세진입기를 이용한 활성중 기간을 측정하
고, ouabain을 참가한 Tyrode액 관류에서 over-
drive excitation 방법에 의해서 차단 후분극이의 유도
하고 몇가지의 약물이의 차단작용 및 결과가 차단 후
분극의 발생에 미치는 영향을 조사하였다.
결 과:

β-아드레날린성 수용체의 자극효과를 배제하기 위하여
propranolol(5×10^{-6}M)을 참가한 대조 Tyrode액 관
류시에는 차단 후분극이 나타나지 않았다. 그러나 여
기에 ouabain을 참가해서 관류하였을시에는, 참가한
ouabain의 용량 및 관류시기에 따라에서 그리고 전기차
극의 drive cycle length(DCL; 250~800ms)에 반비
례해서 차단 후분극의 전위폭이 증가하였다. α-아드레
날린성 작동제인 phenylephrine(PE; 10^{-6}M)은 관
류 초기(10분 또는 20분경)에는 ouabain(2×10^{-6}M)
-induced 차단 후분극을 증가시켰으나 관류 60분경에
는 오히려 감소하였으며 이러한 증가 및 감소효과는
ouabain의 용량(10^{-7}~5×10^{-7}M)에 의존적이었다.

ouabain(2×10^{-6}M)은 최대이완기작물(MDP)을 탈
분극시켰으며 활성중기간의 크기(APA, 50% 재분극시까
지의 활성중기간(APD_{50})을 감소시켰다. Ouabain 및
PE(10^{-7}M)를 참가한 관류액은 phase 0 탈분극의 최대
상승속도를 감소시키뿐 아니라 활성중기간의 크기에도
영향을 미치지 않았다. α_{1}-아드레날린성 작동제인 prazo-
sin(5×10^{-6}M)은 PE(10^{-6}M)에 의한 ouabain-induced
차단 후분극의 증가효과를 억제하였고 감소효과에
는 영향을 미치지 않았다. 이와는 반대로 α_{2}-아드레나

- 1055
린성 길항체인 yohimbine(10^-6M)은 PE의 ouabain-induced 지연 후탈분극 증가효과에는 영향을 미치지 못하였으나 감소효과는 억제하였다.

결 론 :
이상의 실험성적으로부터 가토 Purkinje fiber의 α-아드레날린성 수용체의 작용은 ouabain-induced 지연 후탈분극의 전위를 증가시켜 triggered activity가 일어 나게 하며 이는 주로 α1-아드레날린성 수용체를 통해서 일어나는 것으로 추론하였다.

References

10) Vassalle M and Carpentier R : Overdrive excitation : Onset of activity following fast drive in cardiac Purkinje fibers exposed to norepinephrine. Pflugers Arch. 332 : 198-205, 1972
11) Cranefield PF and Aronson RS : Initiation of sustained rhythmic activity by single propagated action potentials in canine cardiac Purkinje fibers exposed to sodium-free solution or to ouabain. Circ Res 34 : 477-481, 1974
21) Lee CO, Kang DH, Sokol JH and Lee KS : Relation between intracellular Na ion activity and ten-
sion of sheep cardiac Purkinje fibers exposed to dihydro-ouabain. Biophys J 29 : 315-330, 1980

22) Lederer WJ and Tsien RW: Transient inward current underlying arrhythmogenic effects of cardiotoxic steroids in Purkinje fibers. J Physiol(Lond) 263 : 73-100, 1976

