A Clinical Study of Tissue Valve Failure

Duk Hyun Kang, M.D., Ihn Ho Chai, M.D., Myoung Chan Cho, M.D., Young Kwon Kim, M.D., Duk Kyung Kim, M.D., Dae Won Sohn, M.D., Myoung Mook Lee, M.D., Young Bae Park, M.D., Yun Shik Choi, M.D., Jung Don Seo, M.D., Young Woo Lee, M.D.

Department of Internal Medicine, College of Medicine, Seoul National University

On reoperations for tissue valve failure from December 1981 to December 1989, we had diagnosed 71 cases as primary tissue failure. In those cases we found out risk factors of accelerated primary tissue failure and increased thrombogenicity. We reviewed also long-term follow-ups of 542 patients after tissue valve replacement from 1978 to 1982, and durability of tissue valve was evaluated with the freedom rate from primary tissue failure. The results were as follows.

1) Eight eight patients had undergone reoperation by Dec. 1989: 71 cases (80.7%) for primary tissue failure, 11 cases (12.5%) for prosthetic valve endocarditis, 4 cases (4.3%) for thromboembolism, and 2 cases (2.3%) for paravalvular leakage. Primary tissue failure was the main cause (80.7%) of tissue valve failure.

2) Primary tissue failure occurred at a mean postoperative interval of 89.7 months (range: 19.9 – 143.2 months).

3) In children under the age of 18, mean implantation time was 62 months, and in adults mean implantation time was 96 months. In the child group primary tissue failure occurred earlier than in the adult group by 34 months (p<0.01)

4) Actuarial freedom from primary tissue failure was 97.6% ± 0.6% at 5 years and 84.4% ± 2.2% at 10 years.

5) The types and locations of prosthetic tissue valves resulted in no significant difference in durability.

6) Primary tissue failure was mainly caused by calcification of the cusps (76%).

7) In atrial fibrillation the incidence of atrial thrombi was 31.3% and left atrial thrombi was the most common finding (60%).

In conclusion, 1) Durability of tissue valve for 10 years is acceptable, but the limited durability
기계 판막에 내재한 혈전석전증의 위험 및 영구적 항응고요법의 불편과 해로움으로 혈전 형성 성향이 적은 조직 판막이 판막 치환술에 널리 이용되었다. 그러나 최근 기왕에 치환된 조직 판막의 원발성 조직 실패로 인한 판막 재치료술이 급증하므로 조직 판막의 내구성이 중요한 문제가 되고 있다.

저자들은 조직 판막 치환술을 받았던 환자들에 서 원발성 조직 실패의 양상과 환자인자 및 판막 관련인자 등이 내구성에 미치는 영향을 연구하였고, 원발성 조직 실패를 항목을 분석하여 조직 판막의 내구성을 평가하였다.

대상 및 방법


판막 실패는 구조적 실패, 혈전석전증, 혈액학적 기능 이상, 판막주위 누출, 심내막염 등의 원인으로 사망하거나 재치환 수술을 시행한 예로 정의하였고, 원발성 조직 실패는 심내막염의 병력 없이 재수술시 또는 심도차검사상 구조적 실패로 진단 하였던 예로 정의하였다.

통계적 수치는 평균 및 표준편차로 표시하였고 통계학적 처리는 Student's t-검정법과 Log-rank 검정법을 이용하였다.

결 과

1981년 12월부터 시행된 판막 재치료술은 1986 년이후 급증하여 총 88례의 판막 재치료술이 행해졌고 수술 사망률은 6.8%로서 같은 기간에 행해진 판막 치환술의 사망률 4.8%에 근접하였다 (Table 1).

판막 재치료술을 받은 88례중 판막 실패의 원인으로는 원발성 조직 실패가 71례(80.7%)로 가장 많았고 심내막염 11례(12.5%), 혈전석전증 4례(4.5%) 판막주위 누출 2례(2.3%)의 순이었다(Fig. 1).

원발성 조직 실패 71례의 성별은 남자가 35례 여자가 36례있고, 연령분포는 8세에서 52세 사이였으며 평균연령은 27.8세였다. 원발성 조직 실패 군에서 첫 수술후 재대처술까지의 기간은 19.9개월에서 143.2개월 사이였으며 평균 89.7개월이었다. 18세이하의 소아군 18례에서 평균 이식기간은 62.0개월이었고 19세에서 35세까지 청년군 32례에서의 평균 이식기간은 98.4개월, 36세에서 52세까지의 중년군 21례에서의 평균 이식기간 93.4개월로서 청년군에서 소아군보다 유의하게 긴다(Fig. 2).

<table>
<thead>
<tr>
<th>Year</th>
<th>Cases</th>
<th>Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1982</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1983</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>1984</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>1985</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>1986</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>1987</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td>1988</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>1989</td>
<td>21</td>
<td>1</td>
</tr>
</tbody>
</table>

Total 88 6(6.8%)
대치판막의 종류에 따른 이식기간의 차이를 보면 Ionescu-Shiley 판막 38례의 평균 이식기간은 74.9개월이었고, Hancock 판막 23례의 평균 기간은 102.3개월, Angell-Shiley 판막 7례의 평균 기간은 91.6개월로 Hancock 판막군이 Ionescu-Shiley 판막군보다 유의하게 짧았다(Table 2). 평균 이식기간이 남자가 85개월 여자에서 90개월이었고, 중모판 재치환 51례의 평균 이식기간 85개월, 대동맥판 재치환 9례의 평균 이식기간 96개월, 이중 판막 재치환 10례의 평균 이식기간 96개월로서 성별 및 대치판막의 위치에 따른 이식기간의 유의한 차이는 없었다.

1978년부터 1982년까지 서울대학교병원에서 조직판막 치환술을 받았던 542례중 1989년말까지 74례의 원발성 조직 실패가 발생하여 조직판막 치환술 후 5년 및 10년 경과적 으로 원발성 조직 실패율을 보고하였다. Ionescu-Shiley 판막 치환례 390례중 45례의 원발성 조직 실패가 발생하여 5년 및 10년 경과시 원발성 조직 실패율은 각각 97.6±0.6%, 84.4±2.2%였다. Hancock 판막 치환례 108

![IMPLANTATION TIME(months)](image)

values are mean±S.D.

Fig. 2. Implantation time of tissue valve by the age groups.

<table>
<thead>
<tr>
<th>Table 2. Durability by the types of tissue valve</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Type</strong></td>
</tr>
<tr>
<td>Ionescu-Shiley</td>
</tr>
<tr>
<td>Hancock</td>
</tr>
<tr>
<td>Angell-Shiley</td>
</tr>
<tr>
<td>Carpentier-Edwards</td>
</tr>
<tr>
<td><strong>Total</strong></td>
</tr>
</tbody>
</table>

*p<0.05, **p=NS
Data is expressed as mean±SD
Fig. 3. Overall probability of freedom from primary tissue failure for all patients.

Fig. 4. Freedom from primary tissue failure by the valve types.
래 중 21례의 판막 실패가 있어 원발성 조직 실패 없을 확률은 5년 및 10년 경과시 98.1% ± 13.8, 82.8%
% ± 4.8%이었다. 판막의 종류에 따른 유의한 차
이는 없었다(Fig. 3, 4).
원발성 조직 실패의 양상은 숨모판관 혈착
소견이 가장 많았고 대동맥판관 혈착 및 폐쇄
부전 소견이 유사한 빈도었다(Table 3).
판막 재치환술 시 병리학적 관찰이 가능하였던
69례 중 54례(78.3%)에서 섬화는 병변이 판찰되어
섬화가 가장 중요한 원인으로 판단하였고, 섬
화가 동반되지 않은 친공 및 탈수는 6례(8.7%)
단순 비후가 9례(13.0%) 있었다.
심방내 혈전 유무를 파악할 수 있었던 80례의
판막 재치환술 환자들중 동물성 32례 중 심방내
혈전은 1례도 없었고 심방세동 4례중 15례(31.3%)
에서 심방내 또는 판막 혈전이 발생되었다.
혈전의 위치는 좌심방내 혈전이 9례(60%), 우심
방내 혈전 5례(33%), 판막혈전 1례(7%)의 순이
었다.

고 안

이상적인 보철 판막은 혈액학적 기능이 탁월해
야 하고 혈전 성향이 없어야 하며 구조적 및 기능적
내구성이 우수해야 한다5-7). 조직 판막의 우수한
혈액학적 기능과 낮은 혈전 형성은 인정되
tl5, glutaraldehyde로 처리한 이후 조직 판막의
내구성은 개선되었지만8-11) 장기적인 내구성에는
한계가 있다.
조직 판막 실패의 원인으로는 원발성 조직 실패,
조직 판막 심내막염, 혈전색전증, 판막 주위 누출,
내재성 혈착증, 만성 용혈 등을 들 수 있으며1,12)
원발성 조직 실패는 최형성 변화의 결과로서13)
판막 실패의 가장 중요한 원인이고14) 조직 판막의
내구성을 반영한다. 원발성 조직 실패가 일어나는
기전으로는 기계적 인자, 활성화된 혈소판과 백
혈구의 부착, 결합 단자, 면역학적 인자 등이 관
여한다고 한다15-16). 판막 재치환술의 수술 성공
율이 최초 판막 치환술의 수술 성공율에 근사치를
보이는 이유는 주 원인인 원발성 조직 실패에서
판막 실패의 진행이 정착적이어서 심부전의 중상
출현후 진단 및 치료까지 충분한 시간이 허용되어
판막 치환 수술이 대부분 선택 수술로 행해지기
때문이다14,17). 예외적으로 급작한 판막 탈손이
있다면 급성 판막 부전을 초래하여 응급 수술이
필요할 수 있다18). 소아에서 결합 단자사용이 높아
조직의 섬화가 호발하므로 조직 판막 실패가
빠르게 진행되어 18세이하에서 수술후 5년 경과시
판막 실패의 빈도는 약 40%로 보고되고 있다19,20).
본 연구에서도 소아군에서 청소년군에 비해 판막
이식 기간이 유의하게 짧았으므로 18세이하에서
조직 판막은 회복되어야 하고 또한 10년 이상 장
기간의 내구성이 의문시되므로 청소년군에서 조직
판막의 선택도 신중한 고려가 필요하다. Magilligan
등21)은 35세를 기준으로 조직 판막의 내구성에
유의한 차이가 있다고 보고하였지만 Oyer 등22)
은 35세이하 군에서 조직 실패의 유의한 증상을 확
인할 수 없었고 본 연구에서도 청소년군과 장년군
간에 유의한 차이가 없었다. Hancock 판막 치환
술의 이식기간이 Ionescu-Shiley 판막 치환술의
이식기간보다 유의하게 길었던 것은 Hancock 판
막이 Ionescu-Shiley 판막보다 내구성이 우수하기
보다는 서울대학교병원에서 대치 판막으로 Hancock
판막을 이용한 시기인 76년 3월에서 84년 3월까
지인간에 반해 Ionescu-Shiley 판막은 78년 10월이후
 계속 사용해 왔으며 본 연구에서 Ionescu-Shiley
판막의 조기 실패의 증례가 더 많이 포함되었을
가능성이 크다. 우수한 조직 판막의 Ionescu-Shiley
판막은 독특한 판막보다 판막이 대칭적이고 완전
하게 열리고 혈액학적 기능이 우수한23,24) Io-
nescu 등24,25)은 8년 경과시 숨모판과 대동맥판에
서 판막 실패 없는 확률이 90% 및 88%라는 우수한
임상 성력을 보였지만, Gabbay 등26)과 Galo등27)
은 Ionsecu-Shiley 판막의 조직 실패 없는 확률이 승모관의 경우 6년 경과시 60% 대동맥판의 경우 7년 경과시 79%로서 독 조직 판막에 비해 내구성이 높아보였다. 본 연구에서 5년 및 10년 경과시 판막의 종류에 따른 원발성 조직 실패 없는 확률은 유의한 차이가 없었다. 1978년부터 1982년까지 5년간 조직 판막 치환술을 받았던 542례에서 구한 원발성 조직 실패 없는 확률을 보면, 5년까지의 조직 판막의 내구성은 우수하였고 10년 경과시의 내구성도 인정할 만 하지만 수술 후 7년 부터 판막 실패의 반도가 증가하는 추세이므로 10년 이후의 조직 판막의 잔기적 내구성에 대해서는 검토가 필요하며 또한 조직 실패로 인한 사망률과 타병변 제치료 수술률을 포함하지 못하였고 조직 판막 치환술 후 추적이 불가능하였던 예도 있었으므로 조직 실패 없는 확률이 과대 평가되었을 가능성이 있다. 원발성 조직 실패와 관련해서 조직 판막의 내구성을 평가한 보고에 따르면 조직 실패 없는 반도는 5년 경과시 95%, 10년 경과시 70%~85%, 12년 경과시 50%~60%, 15년 경과시 30%~40%으로 11년이후에 조직 판막의 실패율은 급증하고 있다. 24,28,30 원발성 조직 실패의 소견으로는 조직의 석화화, 비후 및 수축, 관절의 천궁 및 탄순 등이 있는데 석화화가 주요 병변으로서 판막 교환 부위에 호발한다. 13,31) 판막 조직의 유연성을 유지하기 위해 저장하에서의 glutaraldehyde 처리 32,33) 석화화를 지연시키는 화학적 처리34) 등이 조직 판막의 내구성을 개선하기 위해 연구되고 있다.

조직 판막에서 혈전 섬전증의 반도는 대동맥판의 경우 약 0.5%/pt-yr로서 승모관의 경우 약 2% /pt-yr에 비해 혈전 섬전증의 위험이 적은 것으로 알려져 있다. 35-37) 혈전 섬전증의 인자로는 체부, 완류 및 저류 등의 혈액학적 변화, 동물, 판막 재료, 센베, 환자의 선형 섬전 및 심율동, 담배, 보행 판막의 위치 등이 들 수 있는데 16) 섬방세동은 분명히 혈전 섬전증의 위험을 증가시켜 동물동에서 혈전 섬전증의 반도는 0%에 가깝지만 섬방세동의 반도는 5.7%/pt-yr에 이른다. 38,40) 본 연구에서도 동물동에 있던 섬방 혈전의 위험이 거의 없어 항문고체가 필요하지 않지만 섬방세동에서는 31%에서 섬방 혈전이 발견되어 항문고체의 지속적인 투여가 필요함을 알 수 있다. 또한 기계 판막으로 승모관 치환했어도 항문고체를 적절히 사용하면 조직판막과 비슷한 혈전쇄전증의 반도를 보이므로, 승모관 치환시 심방세동 환자에서 조직 판막의 선택은 신중히 고려되어야 한다.

결 론


1) 조직 판막 실패의 원인으로는 원발성 조직 실패(80.7%)에 의한 것이 가장 많았다.
2) 원발성 조직 실패 71례에서 첫 수술후 치환술까지의 기간은 평균 89.7개월이었고 18세이하의 소아군에서 62.0개월로 정상군의 96.4개월보다 유의하게 짧았다(p<0.01).
3) 조직 판막 치환술 후 원발성 조직 실패 없는 확률은 5년 경과시 97.6%, 10년 경과시 84.4%였다.
4) 조직판막의 종류 및 치환위치에 따른 내구성의 유의한 차이는 없었다.
5) 원발성 조직 실패의 주요 병리 소견은 석화화 병변이었다.
6) 심방 세동이 있는 경우 심방혈관의 반도는 31.3%였고 좌심방내 혈전이 가장 많았다.

조직 판막의 10년간의 내구성은 인정할 만하지만 10년 이후의 장기적 내구성은 제한되었으므로 정상군에서 조직 판막의 선택이 제고되어야 하고 특히 18세이하의 소아에서 조직 판막의 사용은 피해야 한다. 또한 심방세동이 있는 경우 혈전 섬전증의 위험이 높으므로 항문고체의 지속적인 투여가 필요함을 것으로 사료된다.

References

1) Oyer PE, Stinson EB, Griep RB, Shumway

- 684 -


5) McIntosh CL, Michaelis CL, Morrow AG: Atrioventricular valve replacement with the Hancock porcine xenograft. Surgery 78:768, 1975


25) Ionescu MI, Tandon AP, Saunders NR: Clinical durability of the pericardial xenograft valve. 11 years' experience. Cardiac Bioprostheses. New York, 1982


34) Lenty DJ, Pullerk ERM, Osln DB: Inhibition of mineralization of glutaraldehyde-fixed Hancock bioprosthesis heart valves. Cardiac Bioprostheses. New York, 1982

35) 김종환: 이종조직판막의 장기 임상 성적. 대한흉부외과학회지 20: 289, 1987


