Doppler Echocardiographic Evaluation of Left Ventricular Filling in Hypertensive Subjects

Jin Won Jeong, M.D., Yang Kyu Park, M.D., Ock Kyu Park, M.D.
Department of Internal Medicine, Wonkwang University, School of Medicine

To evaluate the changes of Doppler echocardiographic parameters of left ventricular (LV) filling in hypertensive subjects, 34 patients (M : F = 17 : 17) with and without LV hypertrophy and 19 healthy, age-matched control subjects (M : F = 10 : 9) were examined by M-mode, 2 dimensional and Doppler echocardiography. From the Doppler recording, A2 D (time from second heart sound to the onset of early diastolic mitral flow), peak velocity at early diastole (E) and late diastole (A), ratio of E to A velocity, diastolic filling times, early diastolic deceleration rate (EDDR) and flow velocity integral (FVI) were measured. In the patients without LV hypertrophy, A2 D only was significantly prolonged (127 ± 21 vs 83 ± 24 msec P < 0.01) as compared with the normal subjects, but the patients with LV hypertrophy had more prolonged A2 D (149 ± 31 vs 83 ± 24 msec P < 0.01), higher late diastolic peak velocity (A : 0.58 ± 0.17 vs 0.47 ± 0.09 m/sec, P < 0.01) and lower E/A velocity ratio (0.95 ± 0.19 vs 1.24 ± 0.29, P < 0.01) than the normal subjects. There was a significant correlation between A2 D and LV muscle mass index in entire patients with hypertension (r = 0.42 P < 0.01). These data suggest that A2 D is the earliest parameter indicating abnormality of LV diastolic function and E/A ratio is not likely to be a definite index of LV diastolic dysfunction but rather be a reliable index of LV hypertrophy in hypertensive patients with preserved LV systolic function.

KEY WORDS: Doppler echocardiography · Essential hypertension · Left ventricular filling.
자극들이 원인이 되며, 그 정도는 혈압의 정도, 기간등과 일치하지는 않으나 좌심실의 기능 이상의 중요한 요인으로 생각되고 있다. 그러나, 수축기 기능이 정상이고 좌심실 비대가 없는 고혈압증에서 세도 심부전의 증상이 있을 수 있기 때문에 최근 좌심실의 이완기 기능 이상을 조기에 발견하기 위한 시도가 많지만 아직 이론이 많다(1).

저자등은 수축기 기능이 정상인 본태성 고혈압 환자에서 좌심실 비대에 따른 좌심실 이완기 기능의 변화를 관찰하기 위하여 최근 유용되고 있는 도플러 심초음파술로 좌심실유합 혈류 분광상을 기록하여 이완기 기능 지표들을 측정하고 정상 대조군의 측정치들과 비교하여 몇가지 결과를 얻어 보고한다.

대상 및 방법

대상은 1987년 1월부터 1988년 6월까지 원내의 대부속병원에서 본태성 고혈압으로 처음 진단 받은 자이거나 항 고혈압 치료를 받고 있는 경우는 적어도 일주일 이상 약물증단위로 총 34예 (남자 16예, 여자 18예)였으며 년령 분포는 37세에서 69세까지로 평균 57세였다. 부정맥, 심부전, 혈관성 심질환, 중등도 이상의 판막폐쇄부전이 있는 자는 대상에서 제외하였고 환자군은 2군으로 나누어 좌심실 근질량 지수가 136g/m²(정상대조군의 평균치 ± 2SD) 미만인 17예를 제 1군, 그 이상인 17예를 제 2군으로 하였다.

정상 대조군은 성별, 년령 교차를 시킨 19예 (남자 10예, 여자 9예)로 하였다(Table 1). 심초음파 및 도플러 검사는 Johnson과 Johnson사의 Meridian을 이용하였으며 환자를 안정상태에서 양방위로 취한 후 탐지자를 좌 홍굴면의 제 3 또는 제 4 늑간부위 위치하고 이면성 심초음파 기도를 좌심실의 M형 심초음파를 기록하고 심장 4방도를 취한 뒤 간헐적도 플러리를 이용 승모판부위를 sample volume을 두고 좌심실 유합 혈류를 기록하였으며 동시에 수축 세 2홍굴면에서 심음도를 기록하여 지속 75mm/sec로 인쇄하고 비디오 테이프에 녹화하였다.

 좌심실 M형 심초음파도에서 Penn convention을 이용 좌심실 내경과 벡두계를 측정하고 공식을 이용 좌심실 과학 단순율 (V% FS ; % fractional shortening)과 좌심실 근질량지수 (LVMi: left ventricular muscle mass index)를 계산하였으며 도플러 심초음파에서 심박수, 동적적 이완기간 (A2D = 제 2신음에서 좌심실 유합 혈류 시작점까지), 조기 확장기 최고 혈류속도 (E), 후기 확장기 최고 혈류속도 (A) 및 그 비율 (E/A), 조기 확장기 충혈 시간 (EDFT: early diastolic filling time), 후기 확장기 충혈시간 (LDFT: late diastolic filling time), 조기 확장기 혈류 감속률 (EDDR: early diastolic deceleration rate), 혈류 속도 면적 (FVI: flow velocity integral) 등을 측정하였다(2,3) (Fig. 1).

<table>
<thead>
<tr>
<th>Table 1. Clinical characteristics of subjects studied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal controls (n=19)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Age(Yr)</td>
</tr>
<tr>
<td>Sex(M : F)</td>
</tr>
<tr>
<td>Blood Pressure(mmHg)</td>
</tr>
<tr>
<td>Systolic</td>
</tr>
<tr>
<td>Diastolic</td>
</tr>
<tr>
<td>Heart Rate(beats/min)</td>
</tr>
</tbody>
</table>

LVMi=left ventricular muscle mass index, variables are mean ± standard deviation
결과

1) 좌심실 동용적 이완시간(A2D)은 고혈압 환자군(1군: 127±21.3 m sec, 2군: 149±31 m sec)에서 정상 대조군(83±24 maec)에 비해 유의하게 증가되었다(각각 P<0.001, P<0.001) (Table 2, Fig. 2, 5).

2) 후기 확장기 최고 혈류속도(A)는 좌심실 비대가 있는 제2군(0.58 m/sec)에서 정상 대조군(0.47±0.09 m/sec)에 비해 유의하게 증가되었다(P<0.01, Table 2).

3) E/A 비율은 좌심실 비대가 있는 제2군에서 0.95±0.19로 대조군(1.24±0.29)에 비해 유의하게

![Diagram](image)

Fig. 1. Pulsed doppler mitral flow velocity tracings from the apical position in a hypertensive patient. A2D: time intervals from S2 to the onset of mitral flow, AT: early diastolic acceleration time, DT: early diastolic deceleration time, EDFT: early diastolic flow time, LDFT: late diastolic flow time, EDDR: early diastolic deceleration rate, FVI: flow velocity integral.

Table 2. Various parameters from doppler echocardiographic examinations in normal controls and hypertensive patients

<table>
<thead>
<tr>
<th></th>
<th>A2D (msec)</th>
<th>%FS</th>
<th>LVMI (g/m²)</th>
<th>E (m/sec)</th>
<th>A (m/sec)</th>
<th>E/A</th>
<th>EDDR (m/sec²)</th>
<th>FVI(A) (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal controls (n=19)</td>
<td>83±24</td>
<td>36±5.4</td>
<td>96±20</td>
<td>0.58±0.07</td>
<td>0.47±0.09</td>
<td>1.24±0.29</td>
<td>5.1±1.2</td>
<td>27±10</td>
</tr>
<tr>
<td>Group I (Hypertension ≤ LVMI<136 (n=17))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group II (Hypertension ≥ LVMI≥136 (n=17))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*P<0.01, **P<0.001 vs normal controls

A2D = time from the second heart sound to onset of mitral diastolic flow; LVMI = left ventricular muscle mass index; EDDR = early diastolic deceleration rate; FVI(A) = flow velocity integral in late diastole

337
Fig. 2. A_2D in normal subjects and hypertensive patients.
NC: normal controls
Group I: hypertensive patients with $\text{LVMI} < 136g/m^3$
Group II: hypertensive patients with $\text{LVMI} \geq 136g/m^3$

Fig. 3. Ratio of early diastolic to late diastolic peak mitral flow velocity (E/A) in normal subjects and hypertensive patients.

Fig. 4. Early diastolic deceleration rate in normal subjects and hypertensive patients.
Bracked values represent mean ± standard deviation.

Fig. 5. Correlation between A_2D and left ventricular muscle mass index in hypertensive patients.
A_2D: time interval from the second heart sound to onset of mitral diastolic flow
●: $\text{LVMI} < 136g/m^3$
○: $\text{LVMI} \geq 136g/m^3$

338
고 안

고혈압이 진행되면 좌심실 비대, 좌심실 확장 등의 형태학적인 변화뿐 아니라 이완기 좌심실 총혈류도의 감소 및 확장의 감소 등 기능적인 변화가 따르게 되며 궤극적으로 심부전까지 이르게 된다는 것은 널리 알려진 사실이다. 그중 이완기 기능의 감소는 좌심실의 수축기 기능 이상이 생기기전에 옳 수 있으며 이들은 좌심실 비후, 심유화, 혈압, 성별, 나이등에 따라 다양한 영향을 받는 것으로 많은 보고가 있는 실정이다. 좌심실의 이완기 기능을 평가하는 방법으로 좌심실 조영영상능, 방사성 동위원소 좌심실 조영영상능, 심초음파센서 등이 있으며 최근 시행이 접히고 비관협적이며 반복검사가 가능한 간헐형 도플러 심초음파를 이용 가득한 좌심실 유입 혈류 분량상에서 이완기 기능지표인 확장기 시간간격, 혈류속도, 혈류량을 측정하여 심도자극, 동위원소심조영영상능 등과 비교하여 좋은 상관을 갖는 것으로 보고되고 있어 점차 사용이 증가되고 있지만 아직 이견이 많다.

저자등의 연구에서 동등적 이완시간(A2D)은 고혈압 환자군에서 정상 대조군에 비해 유의하게 증가되었으며 좌심실 비후가 없는 제 1군에서도 유의하게 증가되는 것으로 보아 이완기 기능 이상의 조기 지표로 생각되었지만 좌심실 비후정도와도 같은 상관이 있기 때문에 고혈압증의 특이적인 지표로 인정하기에는 어려움이 있다. 하지만, 이는 Smith, Hamada, Hanrat 등과 일치하였으며 조기 확장기 최고 혈류속도(E)는 고혈압 환자군에서 정상 대조군에 비해 유의한 감소가 있었는데 이는 Gardin 등에 의한 고혈압환자에서 관찰한 결과와 유사하지만 Kita-
References

2) Liebson PR, Devereux RB, Horan MJ : Hypertension research : Echocardiography in the measurement of left ventricular wall mass. Hypertension 9(suppl 11) : 2, 1987
3) Reichek N : Standardization in the measurement of left ventricular wall mass : M mode echocardiography. Hypertension 9(suppl 11) : 27, 1987
10) Rokey R, Kuo LC, Zoghbi WA, Limacher MC, Quinones MA : Determination of parameters of left ventricular diastolic filling with pulsed Doppler echo-

22) 조정희, 김권삼, 김영식, 송정상, 배중화: 고혈압 환자에서 Doppler 심초음파를 이용한 좌심실 확장기 기능에 관한 연구. 순환기 17: 621, 1987
