An Intrapulmonary Cystic Teratoma:
As a Cavitary Lung Lesion

Hyung-Jin Kim, M.D., Joon Hee Joh, M.D., Hyun Sook Kim, M.D., Sung Ho Kim, M.D., Gyung Hyuck Ko, M.D.

We report a rare cause of lung cavities, occurring in a patient with intrapulmonary cystic teratoma. Computed tomography (CT) provided us more detailed informations about the tumor characteristics containing fat and calcification, which could not be distinguished on the plain radiographs. In addition, CT scans clearly demonstrated the dilated anterior segmental bronchus of the left upper lobe entering the posterior aspect of the cavity.

Index Words: Lung, tumor
Lung, cavitation
Lung, CT
Teratoma

Primary extragonadal teratomas in the thorax almost always originate from the mediastinum, and only very rarely occur in the lung. Less than 30 cases of histologically proven intrapulmonary teratoma have been reported (1-7). Most patients come to clinical attention during the third or fourth decade of life, with nonspecific complaints of cough, hemoptysis, and chest pain (5, 8).

We recently experienced this rare condition in a 42-year-old man, manifested as a cavitary lung mass radiologically. Computed tomography (CT) provided us more informations about the characteristics of the tumor.

CASE REPORTS

An acutely ill-looking, 42-year-old man presented with fever, progressive dyspnea and chest pain which appeared two weeks ago. He was healthy until four years ago, when he suffered from pulmonary tuberculosis for which he was medicated for one year. On auscultation, there was decreased breath sound over the left lower thorax. Sputum examination for acid-fast bacilli, fungus, and malignant cells was negative.

Chest radiographs showed hydropneumothorax at the left side and a relatively thick-walled cavitary mass with a polypoid protrusion within the cavity at the left upper lobe. The diagnostic thoracentesis of hydropneumothorax revealed the grossly purulent fluid with the pH of 6.8 and the glucose level of less than 5 mg/dl, which prompted closed thoracotomy. Culture and cytological examination of the empyemic fluid failed to identify a specific organism or cellular components. Chest radiographs obtained after closed thoracotomy more clearly demonstrated the cavitary mass at the left upper lobe (Fig. 1a). On CT scans, the cavity was located at the anterior segment of the left upper lobe with a portion of fungating mass which had several different tissue components including fat and calcification (Fig. 1b). In addition, CT scans clearly demonstrated the dilated anterior segmental bronchus of the left upper lobe entering the posterior aspect of the cavity (Fig. 1c).

At thoracotomy, there was a severe, diffuse adhesion in the left pleural cavity containing pus, which urged the surgeon to perform a pleuropneumonectomy. About 5-cm sized mass was embedded in the anterior segment of the left upper lobe. Although there were some adhesions, it was relatively easy to separate the tumor with the mediastinum which was intact. The cut section of the specimen revealed the 4.6 × 4 × 3 cm-sized cavity with an internally protruding multino-
intrapulmonary cystic teratoma

a. Chest radiograph shows a relatively thick-walled cavity with a polypoid soft tissue component in the left upper lobe (arrows). Note the architectural distortion in the left lung caused by empyema which has been drained through a chest tube.

b, c. Thin-section CT scans with a 1.5-mm collimation and with bone algorithm. Scan obtained with mediastinal window setting (b) clearly shows scattered areas of fat (arrow) and calcification (arrowheads) within the solid component of the tumor. Scan 1-cm above b with lung window setting (c) shows the dilated anterior segmental bronchus of the left upper lobe, which communicates with the cavitory tumor (arrow).

d. Photomicrography of the resected tumor shows cystic teratoma lined by stratified squamous epithelium with its appendage (H & E, × 40).

DISCUSSION

Like teratoma of the mediastinum, intrapulmonary teratoma is thought to originate from the third pharyngeal pouch which is the anlage of the thymus (5, 6). It has two forms in relation to pulmonary architecture, parenchymal and endobronchial. Most of intrapulmonary teratomas were parenchymal, and only four cases of endobronchial teratoma have been reported (5, 6). Approximately half of the intrapulmonary teratomas were located in the left upper lobe, the reason of which is not clearly understood (6). These tumors have been said to have malignant potential, and approximately one-third have been reported to be malignant teratomas (5, 6). In our patient, CT scans provided more detailed informations about the tumor characteristics. They showed various kinds of tissue components which could not be distinguished on the plain radiographs.
The connection between the intrapulmonary parenchymal teratoma and the bronchus, leading to the cavity formation, has been reported in six cases (1-5). Several possibilities can be assumed for the occurrence of this bronchial connection: (1) biological aggressiveness of the tumor involving the bronchus; (2) secondary infection of the cystic tumor; (3) digestive enzyme activity inherent to the tumor, particularly which contains pancreatic glands; and (4) combination of these. Our case resembles that of Holt et al (5). The different linings of the cavity wall and the bronchus and their abrupt transition in our case suggest that the local invasion into the bronchus by the tumor is less likely mechanism for the bronchial connection. In addition, in contrast to five of six previously reported cavitary teratomas, the absence of pancreatic tissue in our case can rule out the theory of digestive enzyme activity. Therefore, it seems to be logical, although the specific organism could not be isolated, to consider secondary infection to be the most likely cause of the bronchial communication with the tumor in our case.

REFERENCES

8. Fraser RG, Pare JAP, Pare PD, Fraser RS, Genereux GP. Diagnosis of diseases of the chest, 3rd ed. Philadelphia: W. B. Saunders Company; 1989: 1607-1608
경희의대 진단방사선과학학교실 연수교육

경희대학교 의과대학 방사선과학학교실에서는 다음과 같이 1994년도 연수강좌를 실시합니다. 본 연수강좌의 목적은 육안척 형태 또는 병리학적 변화를 이해하고, 이것을 근거로 방사선학적 소견을 이해하는 데 있습니다. 금년에는 복부와 흉부방사선 해부 및 병리학을 공부합니다. 많이 참석하시어 강사와 청중이 함께 공부하는 좋은 기회가 되었으면 감사하겠습니다.

방사선과 병리학

<table>
<thead>
<tr>
<th>연수교육 담당교수</th>
<th>1994년 5월 15일(일요일)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastric tumor</td>
<td>경희의대 이동호 교수</td>
</tr>
<tr>
<td>Inflammatory bowel disease</td>
<td>연세의대 김기황 교수</td>
</tr>
<tr>
<td>Intestinal tumor</td>
<td>경희의대 고영태 교수</td>
</tr>
<tr>
<td>Hepatic tumor</td>
<td>서울의대 최병인 교수</td>
</tr>
<tr>
<td>Bile duct disease</td>
<td>경희의대 임재훈 교수</td>
</tr>
<tr>
<td>Pancreatic disease</td>
<td>울산의대 오용호 교수</td>
</tr>
<tr>
<td>Kidney & retroperitoneal tumor</td>
<td>서울의대 김승렬 교수</td>
</tr>
<tr>
<td>Uterine tumor</td>
<td>가톨릭의대 박현권 교수</td>
</tr>
<tr>
<td>Ovarian disease</td>
<td>울산의대 조경석 교수</td>
</tr>
<tr>
<td>Lung tumor</td>
<td>경희의대 유영열 교수</td>
</tr>
<tr>
<td>Pulmonary interstitial disease</td>
<td>삼성의료원 이경수 교수</td>
</tr>
</tbody>
</table>

Neuroradiology and Neuroscience

<table>
<thead>
<tr>
<th>연수교육 담당교수</th>
<th>1994년 11월 20일(일요일)</th>
</tr>
</thead>
<tbody>
<tr>
<td>최우석</td>
<td>경희의의료원 강당</td>
</tr>
</tbody>
</table>

연수내용: 추후공고

장소: 경희의의료원 강당
접수방법 및 연수비: 추후공고

경희대학병원 진단방사선과
연수교육 책임교수: 염
연락처 962-6311-5(교환 2530)