The Usefulness of B-type Natriuretic Peptide test in Critically Ill, Noncardiac Patients

Kang Ho Kim, M.D., Hong-Hoon Park, M.D., Esther Kim, M.D., Seok-Cheol Cheon, M.D.,
Ji Hyun Lee, M.D., Stephen YongGu Lee, M.D., Ji-Hyun Lee, M.D., In Jai Kim, M.D.,
Dong-hoon Cha, Sehyun Kim, M.D.†, Jeongeun Choi, M.D.†, Sang-Bum Hong, M.D.

Department of Internal Medicine, Department of Preventive Medicine†,
Bundang CHA Hospital, College of Medicine, Pochon CHA University,
Department of Internal Medicine†, Kwandong University, Korea

Background: Previous studies have suggested that a B-type natriuretic peptide (BNP) test can provide important information on diagnosis, as well as predicting the severity and prognosis of heart failure. Myocardial dysfunction is often observed in critically ill noncardiac patients admitted to the Intensive Care Unit, and the prognosis of the myocardial dysfunction needs to be determined. This study evaluated the predictability of BNP on the prognosis of critically ill noncardiac patients.

Methods: 32 ICU patients, who were hospitalized from June to October 2002 and in whom the BNP test was evaluated, were enrolled in this study. The exclusion criteria included the conditions that could increase the BNP levels irrespective of the severity, such as congestive heart failure, atrial fibrillation, ischemic heart disease, and renal insufficiencies. A triage B-Type Natriuretic Peptide test with a RIA-kit was used for the fluorescence immunoassay of BNP test. In addition, the acute physiology and

Address for correspondence:
Sang-Bum Hong, M.D.
Division of Pulmonology & Critical Care Medicine, Department of Internal Medicine,
Bundang CHA Hospital, College of Medicine, Pochon CHA University
351 Yatap-dong, Bundang-gu, Seongnam, 463-712, Korea
Phone : 82-31-780-6094 FAX : 82-31-780-5219 E-mail : sbhong@cha.ac.kr
the chronic health evaluation (APACHE) II score and mortality were recorded.

Results: There were 16 males and 16 females enrolled in this study. The mean age was 59 years old. The mean BNP levels between the ICU patients and control were significantly different (186.7 ± 274.1 pg/mL vs. 19.9 ± 21.3 pg/mL, p = 0.033). Among the ICU patients, there were 14 (44%) patients with BNP levels above 100 pg/mL. The APACHE II score was 16.5 ± 7.6. In addition, there were 11 mortalities reported. The correlation between the BNP and APACHE II score, between the BNP and mortality were significant (r = 0.443, p = 0.011 & r = 0.530, p = 0.002). The mean BNP levels between the dead and alive groups were significantly different (384.1 ± 401.7 pg/mL vs. 83.2 ± 55.8 pg/mL p = 0.033). However, the PaO2/FiO2 did not significantly correlate with the BNP level.

Conclusion: This study evaluated the BNP level was elevated in critically ill, noncardiac patients. The BNP level could be a useful, noninvasive tool for predicting the prognosis of the critically ill, noncardiac patients. *(Tuberculosis and Respiratory Diseases 2003, 54:311-319)*

Key words: B-type natriuretic peptide (BNP), APACHE II score, Critically ill noncardiac patient.

서론

B-type natriuretic peptide (이하 BNP)는 과로 급속적으로 혈소란에 분비되는 32개의 아미노산으로 구성된 neuropeptide로서, 심장, 부신, 신장 그리고 주로 혈관에서 존재하는 수용체에 결합하여 소변의 나트륨 배설 증가(natriuresis), 이뇨 작용, 저혈압, 그리고 폐적혈증 확장은 일으키며, 심실의 용적 작용화는 경우에 압력이 상승하는 경우 반비리 증가한다. 즉 BNP는 최심실 부전시에 증가하고, 폐동맥 고혈압이 있는 유심실 부전의 정도와 레이하 증가한다고 알려져 있다. 및 연구에서 심부진의 중증도와 예후를 예측할 수 있는 것으로 알려져 있다. 하지만 아직까지 이전 심질환이 없었던 중환자(critically ill, noncardiac patient)와 BNP와의 관련성에 대한 보고는 없었다.

기저 심질환이 없었던 환자에서도 심한 급성호흡부전, 폐렴증, 아카시킨증, 뇌졸중, 의심, 심장질환 등이 동반될 때 심부전이 용수 있는 것으로 알려져 있다. 이런 심부전의 경우는 식의, 변도 및 환자 예후와의 관련성이 여부가 아직 밝혀지지 않았다. 중환자에서 사용하는 환자와의 다수가 다장기 기능 부전으로 사망하는 것으로 다가있기 때문에 이런 심부전이 존재시 예후가 나쁜 가능성이 있다. 이를 중환자실에서 적절적으로 평가하는 도구로는 trans-thoracic echocardiography, transesophageal echocardiography 그리고 pulmonary artery catheter 등이 이용할 수 있다. 하지만 trans-thoracic echocardiography는 기계 혈압을 받는 경우, 비만 혹은 폐결전시 부정확할 수 있고, transesophageal echocardiography일 경우 검사 시행까지 시간과 인력을 요구하며, pulmonary artery catheter는 정상적인 검사로 심각한 합병증을 야기할 수도 있다. 반면 BNP는 검사 소요 시간은 약 30분으로 신속하게 결과를 얻을 수 있고, 기계호흡중인 환자에서도 쉽게 측정할 수 있는 비침습적 방법이다. 임상적 상황과 고려하여 BNP값이 100 pg/mL 이상이면 심부전을 진단할 수 있는 것으로 알려져 있다.

따라서 저자들은 이전 심질환의 병력이 없는 중환자들에서 BNP를 측정하여 증가여부를 살펴보고, BNP와 중환자의 중증도 및 예후와의 관련성 여부를 살펴보기로 하였다.
대상 및 방법

1. 대상 환자

환자군은 2002년 6월부터 10월까지 포천 중문의대 분당 차병원 중환자실로 입원한 환자 및 전원된 환자 중 이전 심질환 병력이 없었던 환자를 연속적으로 추적 관찰(consecutive evaluation)하였다. BNP가 환자의 중증도에 비해 심하게 증가될 수 있는 응혈성 심부전, 허혈성 심질환, 그리고 신부전을 제외하였고, 이학적 검사상 심장음이 들리는 환자, 양측 하지 부종, 내원시 흉부 방사선 소견상 패종증(hydrostatic pulmonary edema)을 의심할만한 심비대 혹은 양측 늑막홍에 보였거나, 심전도상 선방세동, ST 변화 혹은 T과 변화등 존재 시는 제외하였다. 그리고 18세 이하 환자도 제외하였다. 총 32명(critically ill, non-cardiac patients)을 대상으로 하였으며, 대조군으로는 일반 병동 및 외래 환자 32명을 무작위로 추출하였다.

2. 방법

중환자실 환자를 대상으로 BNP, 동맥혈 검사를 시행하였고, 다른 검사를 토대로 acute physiology and chronic health evaluation(APACHE) II score, 그리고 APACHE III score를 계산하여 환자의 중증도를 평가하였다.

심초음파는 중환자실에서 8명의 환자에게 시행되었고, 대조군에서는 9명에서 시행되었다. primary end point는 BNP와 평가된 중증도 점수(severity score)간의 상관 관계로 정의하였고, secondary end point는 30일 중환자실 사망으로 정의하였다.

3. BNP의 측정

혈액은 5ml 정도의 절혈을 potassium EDTA (1mg/ml blood)가 함유된 튜브를 사용하여 전혈을 채취한 후 원심 분리기로 혈장을 분리하여 바로 BNP를 측정하였다. BNP는 Triage B-Type Natriuretic Peptide test를 이용하였다. Triage BNP test는 fluorescence immunoassay를 통해 전혈과 혈청 내에 있는 BNP를 정량적으로 측정할 수 있으며, 30분 이내에 결과를 확인할 수 있다.

4. 통계 분석

통계분석은 SPSS 10.0 통계 프로그램으로 독립 표본 T-검정을 사용하여 중환자군과 대조군의 BNP 값을 비교하였고, 중환자군 중 생존군과 사망군의 BNP값 및 중증도 점수를 비교하였다. BNP와 사망률 및 중증도 점수와의 상관 관계는 이변량 상관 계수를 이용하여 조사하였다. receiver operating characteristic (ROC) curve 분석을 이용하여 BNP를 통하여 사망률을 예측할 수 있는 민감도와 특이도 및 양성 예측도와 음성 예측도를 측정하였다.

결과

중환자군과 대조군간의 평균 나이는 각각 59.2±20.6세와 60.2±15.7세였고 성비는 비슷하였다. 중환자군의 원인 질환은 폐렴 40.6%(13명), 반성폐쇄성 폐질환 15.6%(5명), 그리고 호흡기적 원인이 아닌 패혈증 12.5%(4명) 순이었다(표 1). 중환자군의 평균 APACHE II score는 16.5±7.6, APACHE III score는 52.4±24.1이었으며, APACHE II scoring system을 사용하여 예측한 사망률은 평균 25.1±17.4%였다. 산소 포화도에 대한 동맥혈 산소 분압 (PaO2/Fio2의 PF ratio)는 평균 236.3±92.4이었다. 사망은 중환자군에서 11명(34.4%)이었고, BNP는 중환자군에서 평균 186.7±274.1 pg/mL로 대조군 19.9±21.3 pg/mL에 비해 유의하게 높았다 (p=0.001). 중환자군에서 BNP 80 pg/mL 이상은 16
Table 1. Baseline characteristics of the patients. (n=64)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>ICU (n=32)</th>
<th>Control (n=32)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>59.2 ± 20.6</td>
<td>60.2 ± 15.7</td>
</tr>
<tr>
<td>Male % (n)</td>
<td>50 (16)</td>
<td>50 (16)</td>
</tr>
<tr>
<td>Diagnosis % (n)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumonia</td>
<td>40.6 (13)</td>
<td>12.5 (4)</td>
</tr>
<tr>
<td>COPD</td>
<td>15.6 (5)</td>
<td>6.3 (2)</td>
</tr>
<tr>
<td>Sepsis without pulmonary disease</td>
<td>12.5 (4)</td>
<td>-</td>
</tr>
<tr>
<td>Bronchial asthma</td>
<td>9.4 (3)</td>
<td>25 (8)</td>
</tr>
<tr>
<td>Drug intoxication</td>
<td>9.4 (3)</td>
<td>-</td>
</tr>
<tr>
<td>Lung cancer</td>
<td>3.1 (1)</td>
<td>28.1 (9)</td>
</tr>
<tr>
<td>Pleural effusion</td>
<td>-</td>
<td>18.8 (6)</td>
</tr>
<tr>
<td>Pulmonary tuberculosis</td>
<td>-</td>
<td>6.3 (2)</td>
</tr>
<tr>
<td>Others</td>
<td>9.4 (3)</td>
<td>3.1 (1)</td>
</tr>
</tbody>
</table>

Data are presented as mean ± Standard deviation or %, (number)
ICU: intensive care unit
COPD: chronic obstructive pulmonary disease.

Table 2. Comparison of the BNP and EF levels between ICU patients and control patients

<table>
<thead>
<tr>
<th>Variables</th>
<th>ICU (n=32)</th>
<th>Control (n=32)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality %</td>
<td>34.4 (11)</td>
<td>-</td>
<td><0.001</td>
</tr>
<tr>
<td>BNP (pg/mL)</td>
<td>186.7 ± 274.1</td>
<td>19.9 ± 21.3</td>
<td>0.001</td>
</tr>
<tr>
<td>log BNP</td>
<td>1.9 ± 0.6</td>
<td>1.1 ± 0.5</td>
<td><0.001</td>
</tr>
<tr>
<td>Ejection fraction (%)</td>
<td>59.4 ± 7.3 (n=8)</td>
<td>65.0 ± 5.1 (n=9)</td>
<td>0.084</td>
</tr>
</tbody>
</table>

Data are presented as mean ± standard deviation or %
ICU: intensive care unit
BNP: B-type natriuretic peptide
APACHE: acute physiology and chronic health evaluation.

명으로 50%였고, 100 pg/mL 이상은 14명으로 43.8%였다. 심초음파는 중환자군에서 8명, 대조군에서 9명에게 시행되었고, 좌심실 구형율(Ejection fraction)은 각각 59.4±7.3%와 65.0±5.1%로 통계학적 차이가 없었다(p=0.084)(Table 2).

BNP와 사망은 유의한 상관 관계가 있었고 (r=0.530, p=0.002), BNP와 환자 중증도 지표인 APACHE II (r=0.443, p=0.011) 그리고 APACHE III (r=0.545, p=0.001)와도 유의한 상관 관계가 있었다. 하지만, BNP와 PF ratio는 유의한 상관 관계가 없었다(r=-0.264, p=0.144)(Table 3). 그리고 APACHE II, III 모두 사망과 유의한 상관 관계가 있었다.

중환자실 사망과 BNP 사이의 receiver operating characteristic (ROC) curve에서 area under the curve(AUC)는 0.810였고, BNP가 114.5pg/mL에 민감도 72.7%, 특이도 76.2%, 양성 예측도 61.5%, 음성 예측도 84.2%로 사망을 예측할 수 있었다(Fig 1).

중환자군 중에서 생존군과 사망군으로 나누어서
Table 3. Correlation between the BNP levels and the other severity scores in ICU patients

<table>
<thead>
<tr>
<th>Variables</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNP and mortality</td>
<td>r=0.530, p=0.002</td>
</tr>
<tr>
<td>BNP and APACHE II</td>
<td>r=0.443, p=0.011</td>
</tr>
<tr>
<td>BNP and APACHE III</td>
<td>r=0.545, p=0.001</td>
</tr>
<tr>
<td>BNP and PaO2/FiO2</td>
<td>r=-0.264, p=0.144</td>
</tr>
</tbody>
</table>

BNP=B-type natriuretic peptide
APACHE=acute physiology and chronic health evaluation.

Fig. 1. ROC curve of BNP vs. APACHE II for ICU mortality.

ROC curve : receiver operating characteristic curve
ICU : intensive care unit
APACHE : acute physiology and chronic health evaluation
AUC : area under the curve.

BNP와 중증도 점수 및 PF ratio를 비교하였다. 사망군에서 BNP는 384.1±401.7 ng/mL로 생존군 83.2±55.8 ng/mL보다 유의하게 높았고(p=0.033), APACHE II score도 사망군과 생존군에서 각각 23.3±5.0, 12.9±6.1으로 사망군에서 높았으며, APACHE III score도 각각 70.5±25.8, 43.0±17.3으로 사망군에서 높았다. BNP 100 pg/mL 이상인 환자는 사망군에서 78%, 생존군에서 29%였고, BNP 80 pg/mL 이상인 환자는 사망군에서 78%, 생존군에서 43%였다. PF ratio도 사망군에서 180.4±68.8로 생존군 265.6±90.8보다 유의하게 낮았다(Table 4).

고찰

본 연구에서는 이전 심절환 병력이 없는 중환자(critically ill, noncardiac patients) 32명을 대상으로 비침습적이고 신속한 결과를 얻을 수 있는 BNP를 측정하였다. 중환자군의 BNP가 대조군보다 유의하게 높았고, 환자의 중증도 지표인 APACHE II, III 및 사망률은 BNP와 유의한 상관관계가 있었으며, 중환자군 중 사망군의 BNP가 생존군보다 유의하게 높았다. 따라서 BNP는 이전 심절환 병력이 없는 중환자의 예후를 예측하는 데 도움이 될 수 있을 것이다.

BNP는 1988년 일본의 Sudoh 등이 뇌혈전증에서 새로운 natriuretic peptide를 발견함으로써 알려져게 되었고[1], 이후 인간의 뇌와 심장에서 그리고 주로 심혈증에 분비된다고 밝혀졌다. A-type와 B-type 그리고 C-type 수용체가 발견되었고, 이러한 수용체들은 신장, 심장, 혈관 내피세포, 혈관의 폐쇄, 무선 그리고 중추 신경계에 접착 분포하고 있다[1]. BNP는 peptide의 배설이 줄어드는 신부전, 감상선 질환, 체내 스트레스의 증가 그리고 저산소증 시에도 증가할 수는 있지만 주로 심부전시에 특이성 있게 증가하는 것으로 되어있다[1]. BNP는 염소가 높을수록, 그리고 여성에게서 더 높다는 보고가 있으나,

--- 315 ---
Table 4. Comparison of the risk scores in Alive vs. dead patients. (n=32)

<table>
<thead>
<tr>
<th></th>
<th>Alive (n=21, 65.6%)</th>
<th>Dead (n=11, 34.4%)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNP</td>
<td>83.2 ± 55.8</td>
<td>384.1 ± 401.7</td>
<td>0.033</td>
</tr>
<tr>
<td>log BNP</td>
<td>1.7 ± 0.6</td>
<td>2.3 ± 0.5</td>
<td>0.006</td>
</tr>
<tr>
<td>APACHE II</td>
<td>12.9 ± 6.1</td>
<td>23.3 ± 5.0</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Mortality predicted by APACHE II(%)</td>
<td>16.8 ± 12.1</td>
<td>40.9 ± 15.1</td>
<td>< 0.001</td>
</tr>
<tr>
<td>APACHE III</td>
<td>43.0 ± 17.3</td>
<td>70.5 ± 25.8</td>
<td>0.001</td>
</tr>
<tr>
<td>PF ratio</td>
<td>265.6 ± 90.8</td>
<td>180.4 ± 88.8</td>
<td>0.011</td>
</tr>
</tbody>
</table>

Data are presented as mean ± standard deviation.
BNP = B-type natriuretic peptide
APACHE = acute physiology and chronic health evaluation
PF ratio = PetO2/PiO2
BNP AUC : 0.810
APACHE II AUC : 0.920

본 연구에서는 연령 및 남녀 성비에 차이가 없었다. BNP의 정상치는 0.5-30 pg/mL로 보고되어 있으며, 심부전 진단에서는 유럽 심부전 지침서에서는 55세 이상일 때 80 pg/mL로, 다른 논문에서는 100 pg/mL로 제안하고 있다. 아직 국내 자료는 없는 실정이나 본 연구의 대조군 결과를 볼 때, 정상치는 외국 보고와 비슷하다. Maekawa 등과의 보고와 마찬가지로 본 연구에서도 PF ratio 와는 상관관계가 없었다. 저산소증시 BNP 증가여부는 아직 논란이 있으며, 여기에 대해서는 좀더 대규모 연구가 필요할 것이다.

본 연구에서 심질환 명령이 없었던 환자들에서 BNP를 기준으로 80 pg/mL으로 하였을 때 50% 혹은 100 pg/mL으로 하였을 때 44%에서 심부전에 해당되었다. 기저 질 심기능 부전 (reversible myocardial dysfunction, 이하 RMD)은 심근의 흐름이 없을 때 심근의 손상 없이 생길 수 있는 가역적인 심기능 저하로서, 원인 질환으로는 심한 납성호흡부전, 패혈증, 아나필락시스, 뇌졸증, 외상, 심장지 등이 알려져 있다. RMD의 원인은 조직의 저산소증, 관상동맥 연속, 관상동맥 미세 혈관의 수축 등과 카페아민, 허스타민, Free radicals, Platelet activating factor, Thromboxane, Testosterone, 그리고 IL-1, IL-6, IL-10, IFN-γ, TGF-β, TNF-α 등 사이토카인 등이 관여할 것으로 추정하고 있다. RMD는 원인질환으로 인한 환자에게 나타날 수 있으나, RMD에 대한 진단 기준, 유병률, 그리고 예후와의 관련성은 불명확하다. 본 환자들 경우 기저 심질환이 아닌 신부전등을 제외하였으므로 RMD가 발생하였음 가능성이 있으며 앞으로 이에 대한 연구가 중요 필요할 것이다. RMD 진단을 위해 심초음파나 또는 pulmonary artery catheter 삽입 등을 모든 환자실 환자들을 대상으로 시행하기에는 현실적으로 어려움이 있다. BNP는 검사 소요 시간은 약 30분으로 신속하게 결과를 얻을 수 있고, 기저호흡증인 환자에서도 쉽게 측정할 수 있는 비침습적 방법이다. 앞으로 RMD 진단에 BNP가 도움이 될 수 있을 것으로 사료되며 앞으로 이에 대한 연구가 필요할 것이다.

임상적으로 BNP는 호흡곤란으로 응급실에 내원한 환자에서 용혈성 심부전의 감별진단할 수, 심부전 환자의 예후 및 병원사의 예측, 그리고 좌심실 이완 부전(LV diastolic dysfunction)의 진단, 폐동맥 고혈압을 동반한 우심실 부전, 그리고 반성호흡 부전 환자에서 저산소증과의 연관성 등에 이용되
요 약

연구배경:
B-type natriuretic peptide(BNP)는 수로 심장의 심실에서 분비되는 호르몬으로서 심부전의 진단, 중증도 및 예후와도 연관이 있다고 알려져 있다. 중환자에서 급성심부전이 우려되는 경우 이 역할을 하며, 이는 환자의 예후와 연관이 있을 가능성이 있다. 따라서 적용을 위해 BNP를 측정하여 증가여부를 살펴보고, BNP와 중환자증종도 및 예후와의 관련성 여부를 살펴보기로 하였다.

방 법:
2002년 6월부터 10월까지 본원 중환자실에 입원하였던 환자 중 환자 중증도와 연관이 없이 BNP가 증가할 수 있는 용혈성 심부전, 심방세동, 혈관 절개, 신부전, 심부전 등에 제한된 32명을 대상으로 하였고, 대조군으로는 일반 병원에 입원한 32명을 무작위 추출하였다. BNP는 Triage B-Type Natriuretic Peptide test를 이용하여 fluorescence immunoassay를 통해 측정하였다. APACHE II score와 APACHE III score 및 중환자실 사망 여부를 추적하였다.

결 과:
남녀비는 16:16이었고, 연령은 59.2±20.6세였다. BNP는 186.7±274.1 pg/mL로 정상 대조군의 19.9±21.3 pg/mL 보다 유의하게 높았다. 중환자간에
시 BNP 100 pg/mL 이상은 14명으로 43.8%였다. APACHE II score는 16.5±7.6이었고, 11명이 사망하였다. BNP값은 APACHE II score 및 사망과 유의한 상관 관계를 보였고 (r=0.443, p=0.011, r=0.530, p=0.002), 생존군과 사망군 BNP값은 유의한 차이를 보였으나 (83.2±55.8 pg/mL vs. 384.1±401.7 pg/mL; p=0.033), PaO2/FIO2와는 상관 관계를 보이지 않았다.

결론:
BNP는 이전 실험환경에서 얻었던 환자에서 증가되어 있었고, 사망률 및 중증도 점수와도 유의한 상관관계가 있었다. 따라서 환자들의 예후를 예측하는데 비침습적이고 빠른 방법으로 도움이 될 가능성이 있다.

참고 문헌