Effects of Immunostimulatory CpG-Oligodeoxynucleotides on Bronchial Asthma in Rat

Sin Hyung Lee M.D., Je Hyeong Kim, M.D., Hye cheol Jeong, M.D.,
Kyung Kye Kim, M.D., Ki Hwan Jung, M.D., Byung Gyu Kim, M.D.,
Seung Heon Lee, M.D., Sang Myun Park, M.D., Cheol Sin, M.D., Jae Youn Cho, M.D.,
Jae Jeong Shin, M.D., Kwang Ho In, M.D., Se Hwa Yoo, M.D., Kyung Ho Kang, M.D.

Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea

Background and Object: Immunostimulatory CpG-oligodeoxynucleotides (ISS CpG-ODN) up-regulate the T_{H1}-type immune response and down-regulate the T_{H2}-type response. This study was performed to investigate the immune response changes resulting from ISS CpG-ODN on bronchial hyperresponsiveness, eosinophilic inflammation and mucus hypersecretion in rat asthma.

Materials and Methods: 10 normal controls (NC) and 26 asthmatic rats, which were generated by ovalbumin (OVA) sensitization and challenge, were studied. The asthmatic rats were randomized into 11 asthma controls (AC) and 15 in the asthma-CpG treatment group (CpG). The CpG group was administered ISS CpG-ODN intramuscularly and the AC group was administered a placebo (0.9% NaCl) on day 15 and 20. After CpG-ODN or placebo administration, we measured the IFN-γ (T_{H1}-type cytokine) and IL-4 (T_{H2}-type cytokine) lev-

1본 연구는 고려대학교 의과학 연구원의 연구비에 의하여 연구되었습니다.
Effects of immunostimulatory CpG-oligodeoxynucleotides on bronchial asthma in rat

eils in the bronchoalveolar lavage fluid (BALF), the specific airway resistance (sRaw), eosinophilic fraction in BALF, eosinophilic infiltration, goblet cell dysplasia and MUC5AC gene expression in the lung tissue.

Results: In the BALF of the CpG group, the IFN-γ concentration was significantly high and the IL-4 concentration was significantly low when compared with the AC group. Both the sRaw and eosinophilic fraction, and infiltration into the BALF and lung tissue significantly lower in the CpG group when compared with the AC group. However, little difference in goblet cell dysplasia and MUC5AC gene expression was observed between the CpG group and the AC group.

Conclusion: ISS CpG-ODN decreases bronchial hyperresponsiveness and eosinophilic inflammation in the rat asthma model through the up-regulation of the Th1-type immune response with the down-regulation of the Th2-type response. However, the effect of these immune response changes on mucus hypersecretion was not remarkable in this study. (Tuberculosis and Respiratory Diseases 2001, 50: 12-28)

Key words: Bronchial asthma, Immunostimulatory DNA sequences, Immunostimulatory CpG-oligodeoxynu-
cleotides.

I. 서 론

기판지 천식은 다양한 유발 인자에 대해서 기판지 과 민 반응과 기도의 염증 반응 및 가역적인 기도의 폐쇄 를 증상으로 하며, 그 유병률은 4% 내지 5% 정도이고, 대부분 젊은 연령에서 이환되어 평생동안 지속된다.

알레르기성 기판지 천식과 관련된 염증 및 면역 반응은 기도 내 호산구(esoinphils)와 Th2형 염증구(lymphocytes)의 침윤 및 Th2형 사이토카인(cytokines)의 발현을 특징으로 하며, Th2형 면역 반응을 억제할 경우 알레르기성 반응이 감소되고, 천식의 기본적 병리 현상이 기도 내 염증 반응도 호전된다고 보고된 바 있다. 따라서 최근 Th2형 면역 반응을 억제시키고, Th1형 반응을 증가시킬 수 있는 방법을 이용한 천식의 새로운 치료법에 대한 연구가 활발히 진행되고 있으며, 이러한 연구 성과들 중 가장 활발한 연구 중 하나가, 세균의 면역 증강용 유전자 시열(Immunostimulatory DNA sequences, ISS)을 이용한 DNA-based immunization, 즉 DNA 백신이 다.

DNA 백신이란 알레르겐 또는 병원성 바이러스, 증양 등에 대해서 세포성 및 체액성 면역 반응을 유발 하는 세균의 DNA 서열로, DNA 이외에 지방산과 같은 운반체(vehicule)가 전혀 포함되지 않은 순수 DNA(naked DNA)를 말한다. 이 외 DNA 서열의 면역 작용 효과의 대부분은, 메틸화되지 않은 사이토
신(cytosine)과 구아닌(guanine)이 포함된 핵산 서 열(unmethylated CpG dinucleotide sequences), 즉 CpG motifs로부터 기인하는 것으로 알려져 있다.

면역 증강성 CpG-올리고 뉴클레오티드(Immunostimulatory CpG-oligodeoxynucleotides, ISS CpG-
ODN)는 CpG-motifs를 포함하는 핵산 올리고 뉴 클레오티드로, ISS CpG-ODN을 동물 천식 모델에 투여할 경우, Th2형 면역 반응은 억제되어 Interferone-γ(INF-γ) 등의 사이토카인을 증가하고, Th1형 반응은 억제되어 Interleukin-4(IL-4)와 IL-5 등의 사이토카인은 감소하며, 결과적으로 천식의 특정적인 기도 과민성이나 호산구성 염증과 같은 조직 하지 소견이 호전되는 것으로 이해되고 있다. 그러 나 최근의 연구에 의하면 INF-γ 결핍 생쥐(INF-γ knock out mice)에서도 CpG-ODN 두여 후 기판지 천식의 호전이 관찰되어, CpG-ODN의 기판지 천식에 대한 억제 효과는 Th1과 Th2 형 면역 반응의 조절이 주요로 작용하며, 이는 CpG-ODN의 기판지 천식에 대한 억제 효과를 설명하기에 적합하다.
이외에도, 다른 기전이 작용하는 것으로 추정되고 있\(1\).

점액과 분비(mucus hypersecretion)는 천식 발작 시 나타나는 주요한 병태 생리 현상으로\(^{12,13}\), 최근의 연구들에 의하면, \(T_{M}^{h}\) 형 사이토카인인 IL-4가 증가할 경우 인간의 기관지 및 폐조직에서 점액과 분비를 결정하는 MUC5AC 유전자 발현이 증가하는 것으로 보고된 바 있다\(^{14,15}\). 기관지 천식 모델에서 ISS CpG-ODN으로 인한 면역 반응의 변화, 즉 \(T_{M}^{h}\) 형 사이토카인인 IL-4의 감소가 점액과 분비를 억제하여, 천식의 임상 증상 호전에 영향을 줄 것이라는 추정이 가능하다.

이에 본 연구는 백서 천식 모델에서, 다음과 같은 사항들을 고찰함으로써, ISS CpG-ODN이 기관지 천식에 미치는 효과를 연구하고자 하였다.

첫째, 이미 형성된 백서 천식 모델에서, ISS CpG-ODN 투여 전후의 항원 유발(antigen challenge)에 따른 특이 기도 저장(specific airway resistance, sRaw)를 측정하여 그 변화를 비교함으로써, CpG-ODN이 기관지 천식의 가장 중요한 병인인 기도의 과민성에 미치는 영향을 고찰하고자 하였다.

둘째, CpG-ODN을 투여한 백서의 폐에 대해서 기관지 폐포 세척물(bronchoalveolar lavage, BAL)을 시행하여, 폐포 세척액에서 CD\(_{4}^{+}\) helper T 임파구의 \(T_{M}^{h}\) 형 사이토카인 IFN-\(\gamma\)와 \(T_{M}^{h}\) 형인 IL-4의 농도를 측정하고, CpG-ODN을 투여하지 않은 천식 백서에서의 농도와 비교함으로써, 기관지 천식의 면역 기전에 대한 영향을 알아보고자 하였다.

셋째, 기관지 폐포 세척액(BAL fluid) 내의 호산구의 분화(differential count)과 함께 폐포, 특히 기관지 주위의 호산구 점용(infiltration)의 정도에 대해 병리조직학적 소견을 관찰함으로써, 면역 반응의 변화가 기관지 천식의 주요한 병리 현상인 호산구성 기관지 염증에 미치는 영향을 고찰하고자 하였다.

넷째, 기관지 주위의 배상 세포 이형성(goblet cell dysplasia)과 폐조직에서 MUC5AC 유전자 발현 정도를 역전사 중합효소 연쇄반응(reverse transcription-polymerase chain reaction, RT-PCR)을 이용하여 준정량적 방법(semi-quantitative method)으로 비교하여, CpG-ODN으로 인한 면역 반응의 변화가 천식 발작 시 호흡 곤란의 정도에 중요한 영향을 미치는 점에 파다 분비에 대한 영향을 알아보고자 하였다.

결론적으로 위의 네 가지 실험 결과를 종합하여, 이들 백서로 CpG-ODN의 면역학적 효과가 천식에서 발생하는 호흡 생리학적, 병리 학적 현상에 미치는 영향을 관찰하고, 그 효과들의 상호 관련성을 인과 관계를 해석함으로써 기관지 천식의 예방 및 치료에 ISS CpG-ODN의 임상적 유효성에 대하여 고찰하고자 본 연구를 시행하였다.

II. 연구 방법

1. 백서 천식 모델의 형성

7주 내지 8주령(齌)의 수컷 백서(Sprague-Dawley rat)를 50마리를 대상으로, 연구 제1일과 7일에 항원 ovalbumin(OVA) 1mg과 면역 보강제로 수산화 알루미늄(aluminium hydroxide, Al(OH)\(_{3}\)) 200mg을 피하 주사하여 감각(sensitization)시키고, 제14일에 1% weight/volume의 OVA 용액을 5분 간 연무기(nebulizer)로 흡입시켜 기관지 천식을 유발하였다. 이 때 유발 전후의 특이 기도 저장을 측정하여, 유발 전보다 sRaw가 150% 이상 증가한 경우를 천식 모델이 형성된 것으로 판정하였고\(^{17,18}\)(Fig. 1), 결과적으로 50마리 중 26마리에서 천식 모델이 형성되었다.

sRaw의 측정은 백서를 마취나 기관지 심판을 시키지 않은 상태에서, 머리 부분과 몸통 부분으로 나뉘어 진 두 방(chamber)으로 구성된 실험 동물용 측정 기록 장치(animal plethysmography box)\(^{19}\)인 Pulmody\(n^{\circ}\)(Hugo Sachs Elektronik, Germany)에서 두부와 체부의 기류 곡선을 측정하여, 휴지 만에서의 위상차(\(\theta\))를 이용한 Pennock 법\(^{20}\)으로 측정하였
Fig. 1. Formation of asthma model.

Fig. 2. Pennock method for measuring specific airway resistance (sRaw).

\[
\tan \theta = \frac{\Omega \times R \times C}{\theta} = \text{phase displacement} \\
\Omega : 2\pi \times \text{respiration rate}, \\
R \times C : \text{time constant of respiratory system} \\
C : \text{thoracic gas volume(V)/(Patm-47mmHg)}
\]

Specific airway resistance (sRaw),
\[
R \times V = (Patm-47mmHg) \times 13.6 \times \tan \theta / 2\pi f \\
R : \text{airway resistance} \\
Patm : \text{pressure of atmosphere} \\
f : \text{respiratory rate}
\]

다(Fig. 2).

2. 실험 대상군의 설정

실험군은 천식 모델을 형성하지 않은 정상 대조군 10 마리, ovalbumin 감작과 유발로 기관지 천식 모델로 확인된 26 마리의 백서울, 천식 대조군 (asthma control group) 11 마리 및 천식-CpG 치료군 (asthma -CpG treatment group) 15마리를 대상으로 세균으로 나누어 연구하였다(Fig. 3).

정상 대조군은 실험 시작 전 기저 기도 저항(basal sRaw)을 측정한 후, 실험 제15일과 제20일에 placebo (생리 식염수) 1ml을 근육 주사하고 제16일과 제21일에 생리 식염수를 5분간 안무하여 노출시킨 후, 제21일에 sRaw를 측정하였다.

천식 대조군은 실험 제15일과 제20일에 placebo (생리 식염수) 1ml을 근육 주사하고, 제16일과 제21일에 1% weight/volume의 OVA 용액을 5분간
Fig. 3. Overall schedule of formation of asthma model and placebo or CpG-ODN administration.
sRaw : specific airway resistance

3. CpG-ODN의 합성 및 투여
CpG-ODN은 2개의 CpG-motifs를 포함하는 20개의 염기 시열(TCCATGAGTTCCTGACGT)에 Bionner사(Daejeon, Korea)에 의뢰하여 합성하였고, 투여 할 CpG-ODN의 용량은 300 μg로 phosphate-buffered saline(PBS)에 섞어서 백서의 둥근(肅筋, gluteus muscle)에 근육 주사하였다.

4. 기관지 및 폐의 채취 및 처리
실험 22일 마지막 휴식 후 노출 24시간 후, pentobarbital sodium 60mg/kg를 복강 내 주사하여 마취 시작 후, 흉리를 개개하고 기관지와 폐 체계를 채취하였다. 격리 후 즉시 우상엽은 RT-PCR을 위해 맥 천 소로 냉동 처리, -70℃ 냉장고에 보관하였다. 우중엽 및 우하엽은 폐조직 내 호산구의 침윤과 배상 세포 이행성의 정도를 관찰하기 위하여 10% 포르탈린 용액으로 고정하였다. 채취에서는 기관지 폐포 세척액 내의 사이토카인(IFN-γ, IL-4)의 농도와 호산구의 분화를 측정하기 위하여 기관지 폐포 세척액을 시행하였다.

5. 기관지 폐포 세척액
우상엽을 체재한 후, 플라스틱 드래프를 기관지를 통해 좌측 주기관지(left main bronchus)에 삽입하고, 3-0 붕합사로 주기관지를 묶은 후, PBS를 4ml, 3ml,
Effects of immunostimulatory CpG-oligodeoxynucleotides on bronchial asthma in rat

2ml 세 번 주입하여, 매번 주입할 때마다 플라스틱 튜브를 통하여 홍리 나오는(natural drainage) 세척액을 시험관에 받았다.

6. 기관지 폐포 세척액 내의 IFN-γ와 IL-4 농도의 측정

첫 1ml의 기관지 폐포 세척액(BAL fluid)을 1.5ml Eppendorf 튜브에 받은 후, 4℃에서 150G로 10분간 원심 분리한 후, 상층액을 위하여 -70℃에 냉동 보관하였다. IFN-γ와 IL-4 등의 사이토카인의 측정은 냉동 보관한 폐포 세척액을 녹인 후 Solid phase sandwich Enzyme Linked-Immunosorbent Assay (ELISA) 방법으로 계측하였다. ELISA는 벡스의 IFN-γ와 IL-4 kit(Cytoscreen Immuno-assay kit Rat INF-γ and IL-4, BioSource International, Inc., USA)를 사용하고, 그 혈청도를 ELS 800 ELISA READER(Biotech, USA)로 측정하여 농도를 결정하였다.

7. 기관지 폐포 세척액 내의 호산구 분석의 측정

첫 1ml를 계획한 나머지 세척액을 모은 후, 잘 섞고 그 중 200μl를 취하여, cytopsin 기계를 이용하여 실온에서 8분간 원심 분리하여 처리한 후, Wright Giemsa stain으로 염색한 후 총 200개의 세포 중 호산구의 분석을 계산하였다.

8. 폐조직 내의 호산구 침윤 및 배상 세포 이형성의 관찰

절제 후 고정된 우중엽 및 하엽을 파라핀(paraffin) 불록에 포화한 후, 4μm의 두께로 잘라 호산구 침윤의 정도를 관찰하기 위하여 Hematoxinl and Eosin(H/E) 염색을 시행하고, 배상 세포의 이형성을 관찰하기 위하여 Periodic Acid Schiff (PAS) 염색을 시행하였다. 호산구 침윤의 정도와 배상세포 이형성의 정도는 각각 5개의 고배율 시야(×400)에서 관찰된 세포의 수로 표시하여 비교하였다.

9. MUC5AC 유전자 발현에 대한 역전사 증합효소 연쇄 반응(RT-PCR)

-70℃로 냉동된 우상엽으로부터 TRIZOL REAGENT®(Life Technologies, Inc. USA)를 이용하여 mRNA를 추출하였다. 추출된 mRNA의 농도를 흡광도로 측정하여 모든 격대에 대하여 동량인 2μg의 RNA로 1st Strand cDNA Synthesis Kit for RT-PCR(Boehringer Mannheim, USA)를 이용하여 cDNA를 합성하였다. 합성된 cDNA는 시약제(primer) 5’-GCC CTC CGG ACA GAA GCA GCC TTC-3’와 5’-GGC CAG TGC GGC ACT TGC ACC AAC-3’을 사용하여 중합효소 연쇄 반응을 시행하였다. PCR은 GeneAmp PCR System 9600®(Perkin Elmer Cetus, USA)으로, 94℃에서 5분간 반응시킨 후, 변성반응은 94℃에서 20초, 결합반응은 61.5℃에서 30초, 연장반응은 72℃에서 30초씩 반복적으로 32회반을 시행한 후 72℃에서 7분 반응시키고 4℃에서 보관하였다. House keeping 유전자는 백서의 glyceraldehyde 3-phosphate dehydrogenase(GAPDH)를 사용하였다. 중합효소 연쇄 반응 생성물을 전기영동 시켜 Ethidium bromide 염색 후 폴라라이트 필름으로 촬영하여 컴퓨터 프로그램 Scion Image(Scion Corporation, USA)를 사용하여 상대적 밀도 분석을 통해 각 실험군에서 MUC5AC 유전자 발현 정도를 준정량적 방법으로 측정하였다.

10. 통계분석

각 군간의 비교는 Mann–Whitney U 검정과 Kruskal Wallis 검정을 사용하여 분석하였다. CpG-ODN 두여군에서 투여 전과 후의 차이에 대한 비교는 Wilcoxon의 순위함 검정을 이용하였고, 시간별로 측정한 각 군의 기도지향은 반복 측정 분산분석법을 사용하여 분석하였다. 모든 계산은 SPSS for Win-
dows Release 9.0.0 (SPSS Inc. USA)을 사용하고,
P값이 0.05 이하인 경우 통계적 유의성이 있는 것으로 판단하였다.

Ⅲ. 결 과

1. 특정 기도 저항(Specific airway resistance, sRaw)의 변화

Placebo(생리식염수) 혹은 CpG-ODN 처리 전, ovalbumin(천식 대조군과 천식-CpG 치료군) 혹은 생리식염수(정상 대조군)를 연부하여 노출시킨 후 측정한 결과 기도 저항은, 노출 후 4분부터 10분까지 3군 간에 유의한 차이를 보였다(p<0.05 by Kruskal–Wallis test). 즉 정상 대조군과 천식 대조군 및 천식-CpG 치료군 사이에는 노출 후 2분에서 10분까지 기도 저항이 있어서 유의한 차이를 보였으나(p<0.05), 천식 대조군과 천식-CpG 치료군 사이에는 노출 전후에 유의한 차이가 관찰되지 않았다(p > 0.05)(Fig. 4).

Placebo(생리식염수) 혹은 CpG-ODN 처리 후 측정한 기도 저항은, 형원 노출 후 2분에서 10분까지 세 군에서 유의한 차이를 보였으며(p<0.05 by Kruskal–Wallis test), 천식 대조군과 천식-CpG 치료군 및 정상 대조군 사이에는 노출 후 2분에서 10분까지 기도 저항이 있어서 유의한 차이를 보였으나(p < 0.05), 정상 대조군과 천식-CpG 치료군 사이에는 노출 후에 유의한 차이는 관찰되지 않았다(p>0.05), CpG-ODN 치료 후 천식-CpG 치료군의 기도 저항이 통계적으로 유의하게 감소되었다(Fig. 4).

2. 기관지 폐포 세척액 내의 IFN-γ와 IL-4의 농도

기관지 폐포 세척액에서 측정한 T₃Hide 형 사이토카인인 INF-γ의 농도는 천식 대조군과 천식-CpG 치료군에서 각각 3.9±1.3 pg/ml, 24.1±10.4 pg/ml로 측정되고, 천식-CpG 치료군에서 천식 대조군에 비하여 유의하게 높았으며(p = 0.005), T₃Hide 형 사이토카인인

![Fig. 4. Specific airway resistance(sRaw) before (A) and after(B) placebo(saline) and ISS CpG-ODN treatment.](image)

In A. *p<0.05 by Kruskal–Wallis test
#p<0.05 Normal control vs. Asthma control and Asthma–CpG treatment
**p<0.05 Asthma control vs. Asthma–CpG treatment
In B. *p<0.05 by Kruskal–Wallis test
**p<0.05 Asthma control vs. Normal control and Asthma–CpG treatment

IL-4의 농도는 천식 대조군과 천식-CpG 치료군에서 각각 5.3±0.7 pg/ml, 2.7±0.6 pg/ml, 천식-CpG 치료군에서 천식 대조군에 비하여 유의하게 낮았다(p = 0.006)(Fig. 5).

3. 기관지 폐포 세척액 및 폐조직에서의 호산구성 염증의 정도

기관지 폐포 세척액에서의 호산구의 분화율, 정상 대조군, 천식 대조군 및 천식-CpG 치료군에서 총 200
Fig. 5. Concentration of INF-γ and IL-4 in BAL fluid in asthma control and asthma-CpG treatment group.
*p = 0.005, **p = 0.006

Fig. 6. Differential count of eosinophil in BAL fluid. (% in 200 cells)
*p < 0.05, **p = 0.57

게의 세포 중 각각 2.0 ± 0.3%, 4.8 ± 0.9%, 2.0 ± 0.4%로 천식 대조군에서 다른 두군에 비하여 유의하게 높았으나 (p < 0.05), 정상 대조군과 천식-CpG 치료 군간에 유의한 차이는 없었다 (p = 0.57) (Fig. 6).

폐조직 중 비기저 중막의 호산구 침윤의 정도는, 5개의 고배율 (×400) 사진에서, 정상 대조군, 천식
Fig. 7. Eosinophilic infiltration in lung tissue (number of eosinophils in 5 HPF, ×400)
*p < 0.05

Fig. 8. Goblet cell dysplasia in lung tissue (number in 5 HPF, ×400)
*p < 0.05, **p = 0.508
대조군 및 천식\-CpG 치료군에서 각각 20.1 ± 5.98 개, 116.0 ± 21.6개, 60.5 ± 11.6개로, 천식 대조군에 서 다른 두군에 비하여 유의하게 높았으며 (p<0.05), 정상 대조군과 천식\-CpG 치료군간의 비교에 있어서는 천식\-CpG 치료군에서 정상 대조군에 비하여 유의 하게 높아 (p<0.05) (Fig. 7), CpG-ODN 치료 후 호 산구성 염증의 정도가 유의하게 감소함을 관찰하였다.

4. 배상 세포의 이형성 및 MUC5AC 유전자 발현 정도

PAS 염색 하에서 관찰한 기관지 주변의 배상 세포의 이형성 세포수는, 정상 대조군, 천식 대조군, 천식\-CpG 치료군에서 5 고배율 시야 당 각각 28.4±7.43 개, 207±32.7개, 173±17.2개로, 정상 대조군에 비하여 천식 대조군 및 천식\-CpG 치료군에서 이형성의 정도가 유의하게 높았고 (p<0.05), 천식 대조군과 천식\-CpG 치료군간의 비교에서는 천식\-CpG 치료군에서 낮은 경향을 보였으나, 통계적으로 유의한 차이 는 관찰되지 않았다 (p=0.508) (Fig. 8).

컴퓨터 프로그램 Scion Image (Scion Corporation, USA)를 사용하여, House keeping 유전자인 GAPDH와의 상대적 광학 밀도 (optical density) 분 석을 통해 측정한 MUC5AC 유전자 발현 정도는 정상 대조군, 천식 대조군, 천식\-CpG 치료군에서 각 각 10.52 ± 0.84 %, 14.45 ± 0.45 %, 14.56 ± 0.53 %로, 정상 대조군에 비하여 천식 대조군 및 천식\-CpG 치료군에서 발현 정도가 유의하게 높았으나 (p<0.05), 천식 대조군과 천식\-CpG 치료군간에는 유의한 차이가 없어 (p=0.61) (Fig. 9). CpG-ODN의 치료 가 작용 하던지의 차이를 배상 세포의 이형성 및 MUC5AC gene의 발현에는 유의한 영향을 미치지 않는 것으로 관찰되었다.

IV. 고 안

기관지 천식의 병인에 관한 최근의 연구 결과들11에 의하면, 천식은 활성화된 T 임파구로부터 분비된 여 러 가지 사이토카인 및 염증 배개 물질들로 인하여 기 관지 점막 내에 호산구가 침윤되고 활성화되는, 특히
한 유형의 세포 매개성 면역 반응을 시사하고 있다. 이들 사이토카인들은 에어로알레르겐 (aeroallergens)과 같은 다양한 전달의 영향에 대하여, T 임파구의 Tm형 면역 반응으로 인하여 분비되며 이와 같이 형존된 Tm형 반응을 억제하는 것이 향후 전달의 치료에 있어서 중요한 변화를 가져올 수 있을 것으로 관

한 것이며 동시에, 형존된 Tm형 반응을 억제하고, 또한 Tm형 반응을 형존시키기 위한 방법으로, 최근 가장 활발하게 연구되고 있는 것이, 면역 증강성 유전자 서열을 이용한 DNA-based immunization, 즉 DNA 백신이다.

면역 증강성 유전자 서열은 Tokunaga 등이 Bacillus Calmette-Guerin (BCG)으로부터 추출하여 전쟁의 유전자 (DNA)가 NK 세포 (Natural killer cell, NK cell)를 형존시키고, Interferons (IFNs) α/β/γ의 형성을 촉진시키며, 전달적인 항암효과를 유발시키는 것을 보고함으로써 알려지게 되었다. 그 후 세 가지 BCG 단백의 여러 가지의 코딩 (coding) 영역에 상응하는 다양한 합성 45-mer 음료리 뉴클레오티드들이 형성되었다. IFNs의 분비를 유발하고, NK 세포의 형성을 증가시키는 이와 같은 ODNs는 CpG dinucleotides를 포함하는 형조성 핵산 (palindromic hexamer, e.g., 5’-GACGTC-3’

5’-AGCGT-3’

5’-AAGCTT-3’), 즉 CpG motifs를 포함한다.

병원군에 대한 전달적인 면역 반응은 단당류, 렉틴 (lectins), 지질, 리포당류 (lipopolysaccharides, LPS) 및 double-stranded (ds) RNA 등과 같은, 높게 보존되고 반복되는 이물질을 효율적으로 신속하게 인지하는 것을 기본으로 한다. 이 과정에서 미생물로 유입 (microbial genomics) 내에 존재하는 면역 증강

성 유전자 서열 (ISS)이 바로 전달 체계가 인지하는 표시가 되며, 더 나아가 이 서열은 병원군의 세포내 점침을 나타내는 표시로 작용한다. 이와 같은 기능을 갖는, 미생물의 면역 증강성 유전자 서열의 함증인물, 면역 증강성 CpG 음료리 뉴클레오티드로 인한 면역 반응은 면역 계통을 효과적으로 자극함으로써 형제의 형성과 MHC class I-restricted CD8+ cytotoxic T 임파구 및 MHC class II-restricted CD4+ helper T 임파구 등을 포함하는 전달적인 면역 반응을 유발하는 것으로 보고되고 있다. CpG-ODN의 투여는 주로 피내 혹은 근육내 주사로 이루어지며, 이 두 가지 방법 모두 동등하게, 높고 강력한 면역 반응을 유발한다. CpG-ODN을 피내 혹은 근육내 주사하는 경우, 각질 세포 (keratinocytes), 섬유아 세포 (fibroblasts) 혹은 근육 세포로부터 복제된 (transfected) 항원이 MHC class I molecules에 제시되면서

CpG-ODN으로서 면역 반응에 미치는 역할에 대해 논의하였다. 또한, MHC class II-restricted CD4+ helper T 임파구도 작용하며, 항원 특이적인 Tm형 면역 반응을 유발하여 단핵구로부터 Interferon-α/β IL-6, IL-12 및 IL-18 등의 분비를 증가시키고, NK 세포로부터 INF-γ를 비롯한 몇몇 사이토카인의 분비를 촉진시키며. 이후 형성된 Tm형 반응 및 IL-4, IL-5 등

의 분비를 억제한다. 또한, NK 세포로부터 분비된 INF-γ는 B 임파구의 IL-6의 분비를 증가시키며, 면역 단백의 형성을 증가시키는 것으로 보고되고 있다. 알레르기 현상, 특히 기관지 천식에서 ISS CpG

-ODN의 효과에 대한 그 간의 연구들을 살펴보면, Chu 등은 Tm-biased BALB/c와 Tm-biased B10.D2 생쥐 모델에서 hen egg lysozyme (HEL)과 CpG-ODN을 동시에 투여한 결과 HEL 특이 IFN-γ는 증가하고 HEL 특이 IL-5는 감소하며, 결과적으로 Tm과 관련된 anti-HEL IgG3의 생성이 촉진되었음을 보고하였고, Kline 등은 역시 생쥐 천식 모델에서 항원과 CpG-ODN을 동시에 투여 시, 기도 내 호산

구의 침착, Tm형 사이토카인, IgE의 생성 및 기도의 파민성이 감소하여, CpG-ODN이 항원으로 유발된 기도의 염증을 약화하는 것으로 보고하였다. Brodie 등은 CpG-ODN을 전신적으로 혹은 점막으로 투여하면, 기도, 폐질환 및 알레르기 호산구 증가가 억제되고, 간접적으로 단핵구, 대식세포 및 NK 세포를 자극하여 IL-12와 IFNs를 증가시키며, T 임파구

에서 유래되는 호산구 활성 사이토카인인 IL-5, GM-CSF 및 IL-3의 생성을 억제하는 것으로 보고하였다. 더 나아가 Sur 등은 ragweed allergen BALB/c
생식에서의 효과들이 체조직에서 기억 세포의 생성과 전신적인 저지로(systemic reservoir)로부터 T₃라고 세포들의 보충으로 인하여, CpG-ODN 뿐만 아니라 후 최소 6주까지 지속되는 것을 관찰하였다. 결론적으로 동물 천식 모델에서 ISS CpG-ODN는 T₃세포 및 NK 세포 등의 면역 세포를 활성화시킴으로서, IFN-α/β/γ 및 IL-12의 분비를 촉진시켜 호산구의 침착과 활성을 억제하며, 이때 분비가 증가되는 IFNs와 IL-12는 T₃세포로부터의 IL-3, 4, 5 및 골수에서 호산구의 증식을 촉진시키는 GM-CSF의 분비를 억제한다. 이와 같은 이론의 반응들은 CpG-ODN 투여 후 수시 간 내에 일어나며, 신전한 면역 체계에 의하여 배제되고, 일시적인 항가산구가(anti-eosinophilic) 기능을 나타낸다. 또 다른 한편으로, IFN-α/β/γ/IL-12는 naïve T₃ 세포에 향상 특이적인 T₃-type으로 분화되는 천식으로, 항원의 작용에 대하여 IFN-γ의 분비를 촉진시켜, T₃-type 반응의 활성화와 분화 및 호산구의 활성을 감소시키며, 이 같은 반응은 이동성 면역의 결과로, 기억세포를 생성시켜 지속적인 면역 효과를 나타낸다.33,34

기도의 염증 과다 분비는 기관지 천식의 주요한 병태 생물 중 하나로, 이로 인한 염증 플러그(mucus plug)의 형성은 심한 급성 천식 발작으로 사망한 환자에서 혼란에 관찰되는 소견이다.37-39,40. 염증은 수분과 단백질, 당단백, 지질 및 염소(salts)의 복합체로, 주성분인 염소소(粘液素, mucin)는 점액성의 당단백으로, 점액의 건식 및 탄성을 결정하는 요소이다.42,43. 호흡기 점액의 기능은 일차적으로 기관지 세포의 성장, 세포의 섬모 운동을 원활하게 할 것으로, 기도내의 이물질의 배출을 용이하게 하고, 점액에 포함된 면역 단백, 라토페린(lactoferrin) 및 리소자이 succesfully(lysosome) 등의 항균 물질들을 동하여 세균의 감염을 예방하며, 입입된 공기를 가시세기관과 동시에 기도 표면의 수분의 손실을 차단하는 역할을 한다.39. 기도 점액의 분비는 점액성 과립(mucus granules)들을 포함하는 표면 성광의 배양 세포와 점막하 분비성의 점액 세포에서 분비된다.39. 점액의 분비를 결정하는 점액소 유전자(mucin gene)는 현재까지, MUC1, MUC2, MUC3, MUC4, MUC5AC, MUC5B, MUC6 그리고 MUC7 등의 8가지 종류가 밝혀졌으며, 이 중 MUC1, MUC2, MUC4, MUC5가 기도에서 발견되고, 그 가운데에서 MUC2와 MUC5의 mRNAG가 기도에 존재하는 것이 증명되어, 이 두 유전자 기도의 점액 분비를 결정하는 것으로 전단되고 있다.39.

기도의 점액 분비와 점액소 유전자에 반응은, 자극 성 가스의 흡입, 염증성 배경 물질, 신경학적 조절 및 물리적 변형 등과 같은 다양한 요인들에 의해 조절된다.39. 담배 연기, 아세안 황(sulfur dioxide), 암모니아, 산화 질소(nitric oxide) 등과 같은 자극성 가스는 기도 점액에 용해되어 점액의 산도(pH)를 산성 혹은 알칼리성으로 변화시키므로써, 원형질막을 손상

- 23 -
시켜 점액소의 분비를 증가시킨다. 또한 아라키돈산 대사물 (arachidonic acid metabolites)인 prostaglandin-F_2α (PG F_2α), leukotriene D_4 (LTD_4), platelet activating factor (PAF), tumor necrosis factor-α (TNF-α), protease, 활성산소중 (reactive oxygen species) 및 nucleotide 등의 영중성 매개 물질들이 점액의 분비를 촉진시킨다. 신경통 합성에 대한 연구에서는, 기관지의 피질 기관에서의 신경소정위가 외측 경계의 배상 세포에서 점액 분비가 촉진되고, 또한 같은 모델에서 capsaicin이나 substance P로 자극하였을 경우 축삭 반사 (axonal reflex)를 통해 배상 세포의 피질의 exocytosis가 발생한다는 보고가 있으며, 악화된 hamster TSE 세포가 저상두 상태 (hypoxic state)에서는 점액소의 분비가 증가되 고, 고상두 상태 (hyperoxic state)에서는 분비가 감소되며, TSE 세포가 배상하는 갑 (gel)을 수축 시킬 경우 점액소의 분비가 증가되어, 삽투압 및 점의 수측으로 수반된 물리적 변화가 점액소의 분비를 조절 하는 것으로 추정되고 있다.

인체의 호흡기의 점액으로부터 점액의 분비는, 이와 같은 다양한 원인들로 인하여 점액 소 유전자, 특히 MUC2와 MUC5의 발현을 통해 조절되는 데, MUC2의 경우는 소장, 대장 및 기도에서 발현되지만 호흡기 점막의 주요한 점액소 유전자인 MUC2가 이론으로 판단된다. MUC5의 경우는 MUC5AC 및 MUC5B의 2가지 이형이 존재한다. 이 중 MUC5B는 기도의 주요한 점액소 유전자로, 2가지의 점액소의 분비를 결정하는 데, 그 중 low – charge glycoform이 천식 환자의 기도 장애 플라그리에서 더 우수한 것으로 보고되었다. MUC5AC는 기관지 호흡기 점액 분비의 주요한 결합 마크로 하라우가, 인체의 기관지에서 유래되는 MUC5AC로 인한 점액소는 주로 배상 세포로서 분비되며, 점막의 분비상에서 분비되지 않는 것으로 알려져 있다. 최근 Temann 등은 신선험적으로 폐에서 IL-4를 사용하여 유전자 의식생 구성 모델에서 MUC5AC 유전자 발현이 증가하는 것을 보고하였고, Dabbagh 등은 in vivo 및 in vitro 모델에서 IL-4가 MUC5AC 유전자 발현 및 AB/PAS염색 양성인 배상 세포의 이형성을 증가시키는 것으로 보고하여, IL-4의 분비가 증가하는 경우 MUC5AC 유전자 발현이 증가하여 점막의 과다 분비가 발생하는 것으로 판단된다.

이에 본 연구에서는, 이미 형성된 백서 천식 모델에서, ISS CpG-ODN을 투여할 경우 나타나는 면역학적 반응, 즉 IL-4의 길로 인하여 MUC5AC 유전자 발현이 감소하고, 점액소의 분비에 직접적인 영향을 미치는 배상 세포의 이형성이 줄어들어, 점막의 과다 분비가 감소할 것이라고 추정하고, 이를 폐조직에서 배상세포의 이형성에 대한 PAS 염색과 MUC5AC mRNA의 발현에 대한 역전자 중합 효소 연쇄 반응을 통하여 증명하고자 하였다. 그러나 실제 연구 결과에서 배상 세포의 이형성은 천식 대조군 및 천식-CpG 치료군에서 정상 대조군에 비하여 유의하게 높게 관찰되었고, 천식 대조군과 천식-CpG 치료군과의 비교에 있어서는 천식-CpG 치료군에서 낮은 경향을 보였으나 통계적으로 유의한 차이는 관찰되지 않았다 (p=0.508). 또한 MUC5AC mRNA의 발현 정도 역시, 천식 대조군 및 천식-CpG 치료군에서 정상 대조군에 비하여 유의하게 높았으나, 천식 대조군과 천식-CpG 치료군과의 비교에 있어서는, 통계적으로 유의한 차이는 관찰되지 않았다 (p=0.61). 이와 같은 결과는 다음과 같은 이유들 때문일 것으로 사료된다.

첫째, 이미 사설한 바와 같이 기도의 점액 분비에는 IL-4를 제외한 여러 가지 다른 영중성 매개 물질들이 관여한다. 실제로 천식 발작 시에, 천식 환자의 기도 표면 점액에서 높은 밀도의 호조구가 관찰되는 것으로 보고된 바 있다. 호조구는 여러 가지의 영중성 매개 물질을 분비하는 세포로, 이중 호조구 elastase는 기도의 mucociliary clearance를 감소시키고, mRNA의 안정성을 높여 MUC5AC mRNA의 발현을 증가시켜, 점액소의 분비를 촉진시키는 것으로 알려져 있다. 결과에서 기술하지는 않았지만, 본 연구에서도 천식 환자에서 호조구의 집중이 관찰되었으며, 이로부터 분비된 호조구 elastase는 천식과 여러 매개 물질에 의하여 점막의 분비가 촉진되었을 것으로 사료된다. 둘째, CpG-ODN은 IL-4를 감소시키는 것 이외에도, IL-
6, IL-12 및 INF-γ의 분비를 촉진시킨다23. CpG-ODN으로 자극된 NK 세포 및 T 임파구로부터 분비된 IFN-γ는 B 임파구의 IL-6의 분비를 촉진시키고, 면역 단백의 합성을 증가시킨다. Levin 등46은 IL-6이 기도 상피 세포에서 MUC2 mRNA의 발현을 증가시키고, 이미 형성된 절개의 exocytosis를 자극하는 것으로 보고한 바 있어, CpG-ODN으로 증가된 IL-6으로 인하여 절개의 파도 분비가 촉진되었음을 가능성이 추정할 수 있다. 결국 ISS CpG-ODN으로 분비가 감소된 IL-4의 효과가, 분비가 증가되었음을 것으로 추정되는 IL-6 및 호산구성 염증 매개 물질들의 효과에 의해서 해체되어, 더 나아가 절개 파도 분비의 지표인 배상 세포의 이형성 및 MUC5AC mRNA의 발현이 증가하였을 것으로 판단된다. 그러나 본 연구에서는, IFN-γ와 IL-4의 농도 이외에 호산구 elastase 등의 염증 매개 물질 및 IL-6 등의 사이토카인의 층층이 시행되지 않아, ISS CpG-ODN이 절개 파도 분비에 영향을 미치지 않는 기전에 대해서 정확히 고찰할 수는 없었다. 향후 이러한 효과에 대한 연구를 위해서는 다양한 매개 물질과 사이토카인의 층층을 통한, 병리 기전에 대한 총체적인 접근이 필요할 것으로 사료된다.

결론적으로 면역 증강성 CpG 올리고 뉴클레오티드(immunostimulatory CpG-oligodeoxynucleotides, ISS CpG-ODN)는 Tm형 면역 반응은 항산식기고, Th형 반응은 감소시키는 것으로 보고되고 있다. 본 연구에서는 백서 천식 모델에서 ISS CpG-ODN으로 인한 면역 반응의 변화가 천식의 주요한 병태 생리 현상인, 기도 파민성, 호산구성 염증 및 절개 파도 분비의 지배는 효과에 대하여 고찰하고자 하였다.

대상 및 방법:
결 과:
ISS CpG-ODN 투여 후 천식 대조군과 비교하여, 천식-CpG 치료군에서 기관지 폐포 세척액 내에서 IFN-\(\gamma\)의 농도는 유의하게 높았고, IL-4의 농도는 유의하게 낮았다. 특히 기도 저항, 기관지 폐포 세척액 내의 호산구의 분획 및 형질에서의 호산구의 점유율은 천식-CpG 치료군에서 천식 대조군에 비하여 유의하게 감소하였다. 그러나 점막 과다 분비의 지표인 배상 세포와 혈청 MUC5AC 유전자 발현 정도는 천식 대조군과 천식-CpG 치료군간에 유의한 차이가 없었다.

결 론:
백서 천식 모델에서 면역 조절성 CpG 올리고 뉴클레오틱도는 T\(_{H1}\) 형 면역 반응을 항진시키고, T\(_{H2}\) 형의 반응은 감소시키므로, 천식의 주요한 병태 생리 현상인 기도 과민성 및 호산구성 염증은 억제하나, 점막 과다 분비에는 유의한 영향이 없었다.

참 고 문 현

29. Kliman DM, Yi AK, Beaucage SL, Conover J, Krieg AM. CpG motifs present in bacterial DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon γ. Proc Natl

