결핵균 독성 여부에 따른 기도 상피세포의 
Chemokine 발현에 관한 연구

성균관대학교 의과대학 내과학과실, 삼성생명과학연구소

 권오정, 김호중, 김정희, 김호철, 서지영, 박정웅, 박상준, 정만표, 최동철, 이종현

= Abstract =

The Difference in Chemokine Expression in Airway Epithelial Cells According to the Virulence of Tubercle Bacilli

O Jung Kwon, M.D., Hojoong Kim, M.D., Jung Hee Kim, M.D., Ho Cheol Kim, M.D.,
Gee Young Suh, M.D., Jeong Woong Park, M.D., Sang Joon Park, M.D.,
Man Pyo Chung, M.D., Dong Chull Choi, M.D., Chong H. Rhee, M.D.
Department of Medicine, College of Medicine, Sungkyunkwan University
Samsung Biomedical Research Institute, Seoul, Korea

Background: We have recently reported that airway epithelial cells can produce RANTES and IL-8 in response to the stimulation of tubercle bacilli suggesting a certain role of airway epithelial cells in the pathogenesis of pulmonary tuberculosis. The pathogenesis of tuberculosis is determined by several factors including phagocytosis, immunological response of host, and virulence of tubercle bacilli. Interestingly, there have been reports suggesting that difference in immunological response of host according to the virulence of tubercle bacilli may be related with the pathogenesis of tuberculosis. We, therefore, studied the expressions and productions of RANTES and IL-8 in airway epithelial cells in response to tubercle bacilli (H37Rv, virulent strain and H37Ra, avirulent strain), in order to elucidate the possible pathophysiology of pulmonary tuberculosis.

Methods: Peripheral blood monocytes were isolated from normal volunteers. Peripheral blood monocytes (PBM) were stimulated with LPS (10 μg/ml), H37Rv, or H37Ra (5 × 10^3 bacilli/well) along with normal control for 24 hours. A549 cells were stimulated with supernatants of cultured PBM for 24 hours. ELISA kit was used for the measurement of TNFα and IL-1β production in supernatants of cultured PBM and for the measurement of RANTES and IL-8 in supernatants of cultured A549 cells. Northern blot analysis was used for the measurement of RANTES and IL-8 mRNA expression in cultured A549 cells.

Results: TNFα and IL-1β productions were increased in cultured PBM stimulated with LPS or tubercle bacilli (H37Rv or H37Ra) compared with the control. There was, however, no difference in TNFα and IL-1β pro-
서론

우리나라는 과거에 결핵환자라는 명예롭지 못한 병명을 가지고 있었으나 1960년대 이후 정책 발전에 의한 생활 여건의 향상과 체계적인 국가결핵관리 사업의 결과로 결핵유병률은 높은 수준에 감소되어 왔다. 그러나 1995년도의 전국결핵실태조사 결과에 따르면 아직도 결핵유병률이 1.0%로 되고 있으며 설명 가능한 유병률은 0.22%에 달하고 있어 1,2) 결핵에 관한 연구는 매우 중요하다고 하겠다.

결핵의 예방에 관한 연구는 주로 대식세포와 임파구에 초점이 맞추어 지고 있었으나 최근 Striefer 등은 염증성 결핵환에서 기도상피세포(airway epithelial cell)도 여러가지의 cytokine을 분비함으로써 염증반응에 농도적으로 참여한다는 증거를 제시하였다 3). 기도상피세포는 기도나 폐포를 둘러싸고 있는 세포로서 인체와 외부 대기를 물리적으로 구분하는 장치체의 역할을 하며, 가스교환을 이루어지게 하고, 표면활성물질을 분비하여 폐포의 허탕을 막치는 역할을 한다. 염증성 결핵환에서 기도상피세포는, 외부 대기의 병원체와 독성물질이 침범하는 최초의 세포이며, 염증세포의 동원이 일어나는 장소이고, 염증반응이 일어나서 손상을 당하는 피손상세포이기도 하다. 그러나 최근의 연구에서, 기도상피세포는 단순히 염증반응의 피동적

피해자가 아니며, 농도적으로 염증반응에 참여하고 이를 조절하는 기능을 가진 세포임이 밝혀지고 있다 4,5). 실제로 여러가지 cytokine을 생산, 분비할 수 있다고 보고되었으며, 특히 RANTES으로 분류되는 IL-8, monocytes chemotactic protein(MCP-1), RANTES(Regulated on Activation, Normal T cell, Expressed and Secreted)등도 생산할 수 있다 는 것이 밝혀졌다 6,7).

최근 결핵균주(H37Rv) 자극에 의해 peripheral blood monocytes(PBM)에서 IL-1β와 TNFα가 생산되고 기도상피세포에서는 IL-8과 RANTES와 같은 chemokine가 생성된다는 사실을 밝힌 바 있다 8). 이와같은 사실은 기도상피세포가 IL-8과 RANTES와 같은 chemokine를 분비함으로써 결핵의 병원에 농도적으로 참여함을 시사한다고 하겠다.

기도상피세포에서 발현되는 chemokine들이 결핵의 범위를 인지한다면, 결핵을 요소가 되는 독성은 가진 균주인 H37Rv와 결핵을 요소가 되는 균주인 H37Rv로 자극하였을 때 기도상피세포에서 분비되는 chemokine의 성장이 다른 것이라는 가정이 가능하다. 실제로 Roach 등의 연구에 의하면 9) 독성을 가지고 있는 Erdman 균주와 독성을 가지고 있지 않은 H37Rv의 liparabinomannan(1.AM)의 구조가 다르고, 이 LAM으로 대식세포를 자극하였을 때 H
37Ra LAM은 대식세포에서 TNFα를 생성시키지만
H37Rv LAM은 TNFα를 생성시키지 못하고 이와같은 차이가 결핵균에 대한 생체의 방어기전을 설명한다.
고 보고하였다. 독성이 없는 H37Ra는 생체에서 면역 반응을 유도하여 TNFα와 같은 cytokine을 분비함으로써 결핵균이 죽어 되어서 생명에서 질병이 발생하지 않고, 독성이 있는 균주인 Erdman은 생체에서 면역 반응을 적절하게 유도하지 못하기 때문에 결핵균이 살아 낼 수 있어 생체에서 질병을 발생한다는 설명이 가능하다.

본 연구는 폐결핵의 방태생리에서 기도상피세포의 역할을 규명하기도, 독성이 있는 균주인 H37Rv와 독성
이 없는 균주인 H37Ra를 사용하여 결핵균의 독성 여부에 따른 기도상피세포에서 분비되는 chemokine의 차이를 연구하고자 하였다. 특히 결핵균 감염에 따
른 기도상피세포에서 분비되는 chemokine에 관한 연
구는 매우 부족한 현실이므로 결핵의 방태생리를 이해 하는데 중요한 자료가 될 것으로 기대되어 본 연구를 시행하였다.

대상 및 방법

1. 실험 방법

결핵균의 감염에 의한 기도상피세포의 chemokine의
발현을 연구하기 위하여 제 2형 폐포상피세포의 성질을 갖는 A549 세포주를 선택하였다. 일차 배양된 인체 기도상피세포는 배양이 어렵고 양을 수 있는 세
포의 양이 많지 않아 일차 세포 배양할 수 있는 A549 세포주를 이용하여 실험을 진행하였다.

결핵치료를 받은 적이 없고 흙부 방사선 사진이 정상인 정상인의 상황에서 체취한 말초혈액에서 말초혈
액 대식세포(PBM)를 분리하여, aonicated H37Rv, H37Ra(5×10^5 bacilli, ATCC)로 자극하면서 24시
g간 동안 배양하였다. 이때 음성 대조군으로 PBM 배양시 아무 것도 처리하지 않은 군을 두었고, 양성 대조군으로는 PBM에서 TNFα와 IL-1β의 발현을 증
가시키는 것으로 알려진 LPS(10μl/ml)로 자극한 군을 두었다. 또한 PBM에 대한 interferon gamma(IFNγ)의 영향을 평가하기로 PBM을 결핵균으로 자
극하기 한 시간동안 IFNγ(10ng/ml, R & D)로 전
처시킨 군과 IFNγ 전처지 없이 자극한 군을 두었다. 24시간 후 상충액을 체취하여 상충액의 일부는 −70
℃에서 보관하였고 이후 ELISA kit(R & D)를 이용하여 TNFα와 IL-1β의 농도를 측정하였다.
배양된 PBM의 상충액(1 : 2 회석액)으로 배양된
A549 세포를 다시 자극하면서 24시간 동안 배양하였
다. 24시간 배양 후, 상충액은 IL-8, RANTES의 측
정을 위하여 −70℃에서 보관하고, 남아있는 A549
세포에서 tRNA를 추출하였다. 배양 상충액에서는
ELISA kit(R & D)를 이용하여 IL-8, RANTES의 농도를 측정하였고, 추출한 tRNA는 Northern blot analysis를 이용하여 IL-8, RANTES의 mRNA의 양을 측정 정량하였다.

2. 방법

(1) A549의 배양

A549 세포주는 ATCC로부터 구입하였으며, RPMI
배지에 10% fetal bovine serum(FBS)를 추가하여
35mm 6 well culture plate에서 온도 37℃, 이산화
탄소 농도 5%로 환경에서 배양하였다. 세포가
자라 포화상태에 도달하면 실험에 사용하였고 PBM
의 배양상충액으로 자극할 때에는 FBS는 사용하지
않았다.

(2) PBM의 배양

상온에서 정액형 50ml을 체취하여 혈퍼린 300단위
와 혼합하고, 동량의 RPMI 완전배지와 혼합한 후,
Ficoll-Hypaque 용액(1.077 g/ml)과 2 : 1 비율로
혼합하여, 400G에서 30분간 원심분리하였다. 단핵
구세포층(mononuclear cell layer)을 Pasteur pi-
pette의 수용액을 분리하고 RPMI-FBS로 400 G에서 2회 더 세척하였다. 분리된 단핵구 용액의 일부를 trypan blue로 염색하여 viability를 측정하였고 hemocytometer를 이용하여 세포농도를 측정하였다. Viability는 95% 이상이었으며 세포농도는 5×10⁶/ml가 되도록 RPMI-FBS에 부유하였다.

RPMI-FBS로 부유한 PB를 35mm 6 well culture plate에 1ml씩 분주한 후, 온도 37℃, 이산화탄소 5%로 향유하여 2시간 배양하여 PB를 부착시켰다. 부착된 PB를 37℃의 Hank's balanced salt solution without calcium and magnesium (HBSS)로 2회 세척하여 제거하고 부착된 PB를 실험에 사용하였다. 부착된 PB를 H37Rv, H37Ra(5×10⁶ bacilli/well), LPS(10μg/ml)로 24시간 동안 자극시켜 배양하였고 이 때 아무것도 마다 않은 장상 대조군을 두었다. 자극을 주기 한 시간전에 IFNγ(10ng/ml)로 전처리한 군과 IFNγ 전처리 없이 자극한 군을 두었다.

(3) 경흡균 부유액의 준비

Ogawa 배치에서 3주 동안 2차 배양된 경흡균(H37 Rv, H37Ra)집락을 떼어 HBSS 10ml에 부유시키고, 400G으로 10분간 원심분리하여 배지 성분을 제거하였다. 상층액은 30분간 음파처리(sonication)하여 경흡균을 균일하게 분포시킨 후 다시 원심분리하여 그 상층액을 사용하였다. 항산균 염색으로 세포농도를 측정하여 5×10⁷ bacilli/ml의농도가 되도록 RPMI로 희석하였고, 10μl씩 분주하여 -70℃에서 보관하였다가 실험에 사용하였다.

(4) Northern blot analysis

Chomczynski와 Sacchi의 방법을 수정하여 세포의 tRNA를 분리하였다19). 4M guanidine thiocyanate, 25mM sodium citrate (pH 7.0), 0.5% sarcosyl, 0.1M 2-mercaptoethanol 용액을 직접

culture plate에 넣어 세포를 녹인 후 용액을 eppendorf tube로 옮겼다. 여기에 pH 4.0의 sodium acetate를 추가하여 산성화시키고 phenol-chloroform-isoamyl alcohol (25:24:1)로 2회 RNA를 추출하였다. Isopropanol로 24시간 동안 -70℃에서 처분하신 후 원심분리하여 RNA를 얻은 후 75% ethanol로 세척하고 건조시켰다.

추출한 RNA를 RNase-free water에 용해시키고 formamide를 포함한 1% denaturing agarose gel에 전기영동하였다. 이를 Hybond nylon filter에 blot하고 자외선에 4분간 노출시켜 고정하였다.

IL-8 cDNA probe는 미국 R.G. Crystal 박사 (NIH, Bethesda, MD)로부터 기증받았으며, 제1 exon의 PstI 위치부터 제4 exon의 BamHI 위치까지를 포함하는 750 base pair 크기의 DNA이고, RANTES cDNA probe는 미국 T.J. Schall 박사 (Genentech Inc., San Francisco, CA)로부터 기증받았으며, EcoRI 위치부터 ApaI 위치까지의 410 base pair 크기의 DNA이다. House-keeping gene인 GAPDH(glyceraldehyde 3-phosphate dehydrogenase) cDNA probe는 캐나다 T.R. Bai 박사 (UBC, Vancouver, Canada)로부터 기증받았으며, 1272 base pair 크기의 PstI 위치사이의 DNA이다. 각각의 cDNA는 multi-prime DNA labelling system을 이용하여, ³²P로 random priming하여 10⁴ cpm/ml 농도로 사용하였다.

Prehybridization은 50% formamide, 5배 standard saline citrate (SSC), 0.1% sodium dodecyl sulphate (SDS), 5배 Denhardt's solution, 0.1% sodium pyrophosphate, 50mM tris-HCl (pH 7.5), 5mM EDTA, 100μg/ml salmon sperm DNA의 조건에서 시행하였고, hybridization은, 10⁴ cpm/ml의 labelling된 IL-8, 혹은 RANTES cDNA로 42℃에서 20시간 동안 시행하였다. 세척은 2배 SSC, 0.1% SDS로 실온에서 1회, 1배 SSC, 0.1% SDS로 42℃에서 1회, 0.5배 SSC, 0.1% SDS로 42℃에서 1회, 0.1배 SSC, 0.1% SDS로
55℃에서 1회 실시하였다. 세척을 마친 nylon filter는 방사선 film에 -70℃에서 1~5일간 노출시키고 방사선 film을 현상하였다. 대조실험을 위하여 nylon filter는 다시 50% formamide, 10mM sodium pyrophosphate로 65℃에서 1시간동안 세척한 후, 다시 GAPDH cDNA로 마찬가지 방법으로 Northern blot analysis을 시행하였다. 결과는 laser densitometry로 정량화하여 통계처리 하였다.

(5) Chemokine의 측정

Chemokine의 농도는 -70℃에서 보관되었던 상층액에서 R & D사에서 구입한 ELISA kit를 이용하여 측정하였다. 배양된 PBM의 상층액에서는 IL-1β와 TNFα의 농도를 측정하였고, 배양된 A549의 상층액에서는 IL-8과 RANTES의 농도를 측정하였다.

결 과

1. 말초혈액 단핵세포에서의 TNFα와 IL-1β의 생성

말초혈액 단핵세포를 LPS, H37Rv, 또는 H37Ra로 자극하였을 때 대조군에 비하여 TNFα와 IL-1β의 생성이 옆이 있게 증가하였다. 독성이 없는 H37Ra로 자극하였을 때 독성이 있는 H37Rv로 자극하였을 때보다 TNFα와 IL-1β의 생성이 많았으나 통계적인 유의성은 없었다. INFγ로 전처리하였을 때 TNFα와 IL-1β의 생성이 전처리하지 않은 군에 비해 증가하였으나 H37Rv군과 H37Ra군 사이에 통계적으로 유의한 차이는 없었다. 결핵균으로 자극하였을 때 말초혈액 단핵세포에서의 TNFα의 생성이 LPS로 자극한 군에 비해 의미있게 증가하였다 (Fig. 1).

2. A549 세포에서의 RANTES와 IL-8의 유전자 발현

결핵균이나 LPS로 자극한 말초혈액 단핵세포 배양액으로 A549 세포를 자극하였을 때 RANTES

Fig. 1. TNFα and IL-1β productions in cultured peripheral blood monocytes.

Panel A represents TNFα production and panel B represents IL-1β production. TNFα and IL-1β productions were increased in response to the stimulation of LPS, H37Rv, or H37Ra. TNFα and IL-1 β productions were greater in peripheral blood monocytes(PBM) stimulated with H37Ra than in PBM stimulated with H37Rv. This difference, however, was not statistically significant between two groups. Open bars represent the data in the absence of IFNγ and hatched bars represent the data in the presence of IFN γ.

* p<0.05, compared with LPS stimulation. (n=7)
Fig. 2. A representative Northern blot analysis. Lane 1 represents control-conditioned media (CM), lane 2 represents LPS-CM, lane 3 represents H37Rv-CM, and lane 4 represents H37Ra-CM. RANTES and IL-8 mRNA expressions were increased in H37Ra groups compared with H37Rv groups. (n=7)

와 IL-8의 유전자 발현이 대조군에 비하여 의미있게 증가하였다 (p<0.001). 또한 H37Ra 배양액으로 자극한 군에서 H37Rv 배양액으로 자극한 군에 비하여 RANTES와 IL-8의 유전자 발현이 의미있게 증가하였다 (p<0.05, Fig. 2, 3). 그리고 IFNγ로 전처치한 군에서 RANTES와 IL-8의 유전자 발현이 전처치하지 않은 군에 비하여 증가되었으나 그 양상에는 차이가 없었다.

3. A549 세포에서의 RANTES와 IL-8의 생성

A549 세포를 결핵균이나 LPS로 자극한 말초혈액 단핵세포 배양액으로 자극하였을 때 RANTES와 IL-8의 생성이 대조군에 비하여 의미있게 증가하였다. 그러나 유전자 발현과는 달리, H37Ra 배양액으로 자극한 군에서 H37Rv 배양액으로 자극한 군에 비하여 RANTES와 IL-8의 생성이 증가하였지만 통계적인
Fig. 3. RANTES and IL-8 mRNA expression in A549 cells.

Panel A shows RANTES mRNA expression and panel B shows IL-8 mRNA expression. Data are expressed as mean ± SEM (n=7). RANTES and IL-8 mRNA expression were increased in A549 cells stimulated with H37Ra-conditioned media compared with H37Rv-conditioned media. Open bars represent the data in the absence of IFN and hatched bars represent the data in the presence of IFN.

*p<0.05, compared with H37Rv

Fig. 4. RANTES and IL-8 production in A549 cells.

RANTES and IL-8 productions were increased in A549 cells stimulated with LPS-, H37Rv-, or H37Ra-conditioned media compared with control. IL-8 production was significantly greater in A549 cells stimulated with H37Ra conditioned media than in A549 cells stimulated with H37Rv conditioned media (*p<0.05). RANTES and IL-8 productions were greater in A549 cells stimulated with conditioned media pretreated with IFN. However, there was no difference between H37Rv and H37Ra groups even in the presence of IFN. (n=7)
와 IL-8의 생성이 전처치하지 않은 군에 비하여 증가 되었지만 그 양상에는 차이가 없었다 (Fig. 4).

고찰

본 연구에서 말초혈액 단핵세포를 결핵균(H37Rv or H37Ra)이나 LPS로 자극하였을 때 말초혈액 단핵세포에서 TNFα와 IL-1β의 생성이 대조군에 비해 의미있게 증가하였고(Fig. 1), 배양한 단핵세포의 상층 액으로 다시 A549 세포를 자극하였을 때 A549 세포에서 RANTES와 IL-8의 유전자 발현과 생성이 대조군에 비하여 의미있게 증가하였다(Fig. 2, 3, 4).

말초혈액 단핵세포를 특성 있는 균주인 H37Rv로 자극한 군과 독성 없는 균주 H37Ra로 자극한 군 사이에는 TNFα와 IL-1β 생성의 차이를 발견할 수 없었다(Fig. 1). A549 세포를 말초혈액 단핵세포 배양액으로 자극하였을 때에는 RANTES와 IL-8의 유전자 발현이 H37Ra로 자극한 군에서 H37Rv로 자극한 군에 비해 의미있게 증가하였으나 그 차이는 크지 않았다(Fig. 2, 3). 그러나 유전자 발현과는 달리 A549 세포에서의 RANTES와 IL-8의 생성은 H37Ra로 자극한 군에서 증가하였지만 통계적인 유의성은 없었다(Fig. 4). 이와 같은 사실로 보면 기도상피세포가 폐렴성에서 RANTES와 IL-8과 같은 강력한 chemokine를 분비하여 염증반응 증폭사진으로서 폐렴의 치료가 가능하다는 차이를 발견할 수 있었다.

그러나 결핵균의 독성 여부에 따른 기도상피세포에서의 chemokine 생성의 차이는 명확하지 않았다.

본 연구에서 기도상피세포를 결핵균이나 LPS로 직접 자극하지 않고 우선 말초혈액 단핵세포를 자극하고 이 때 얻어진 배양액으로 기도상피세포를 자극하였는데, 이것은 결핵균이나 LPS로 기도상피세포를 직접 자극하려 하였던 RANTES나 IL-8이 발현되지 않는 경우도 있다. 실제로 인체에서 결핵이기가 폐를 침범하였을 때 기도상피세포가 이것은 대응하여 직접 chemokine를 생성하기보다는, 활성화된 폐포대식세포에서 생성된 TNFα와 IL-1β와 같은 proinflammatory cytokine들이 기도상피세포를 paracrine fashion으로 자극하여 RANTES와 IL-8과 같은 chemokine를 생성하는 것으로 알려져 있기 때문에 본 연구에 사용된 모델이 의미가 있다고 생각된다. 만 본 연구에서 폐포대식세포를 사용하지 않고 말초혈 액 단핵세포를 사용하였는데, 이것은 정상인에서 폐포 대식세포를 얻기 어렵고 또한 정상인에서 얻어진 폐포대식세포도 사람에 따라 활성화된 정도가 매우 다라 일차로 말초혈액 단핵세포를 사용하였다.

Chemokine이란 염증세포에 강력한 화학주성을 갖는 세포에계물질들의 촉진으로서, 비슷한 분자구조를 갖는 약 8~10 킬로달군 크기의 단백질이며, 현재까지 약 10여종이 알려져 있다. Chemokine는 그 생화학적 구조와 화학주성을 둘기준으로 2가지 아과(subfamily)로 구분하는데 C-X-C 아과와 C-C 아과이다. Chemokine C-X-C 아과는 단백질구조의 첫 cysteine 과 다음 cysteine 사이에 다른 아미노산(NX)이 하나 삽입되어 있는 구조적 특징이 있다. 이러한 chemokine는 아과에 따라 화학주성을 보이는 특징이 있는데, IL-8을 포함하는 C-X-C 아과는 호중구에 대한 강력한 화학주성을 보이며 단백구에 는 화학주성을 보이지 않고, RANTES와 MCP-1을 포함하는 C-C 아과는 단백구에 강력한 화학주성을 보이며 호중구에는 화학주성을 보이지 않는다. 그 외에도 chemokine는 염증구 또는 호산구, 호혈구에 는 여러 가지 상이한 작용을 나타내고 있다. 예를 들면 RANTES는 기억세포(memory T-cell)에 화학주성을 가지며, IL-8은 T 염증구에는 화학주성을, RANTES와 MIP-1α는 호산구에 화학주 성과 활성화, MCP-1과 RANTES는 염증구에 서 허스타민 분해촉진을 한다는 사실이 보고되었다.

본 연구에서는 결핵균으로 자극한 경우 농시에 LPS로 자극하였는데, LPS로 자극한 것은 급성증절 질환을 대표하는 질환으로 편법을 대표한다고 보 수 있다. 폐렴균이 만성염증질환이고 주로 대식세포와 임
파구가 관여하고, 폐렴은 급성염증 조직이고 주로 호흡구가 관여한다는 사실을 감안하면 본 연구에서 결핵균으로 자극된 군과 LPS로 자극된 군간에 발생되는 chemokine의 차이가 기대되었다. 그러나 기도상피세포에서 발현되는 RANTES와 IL-8이 결핵균으로 자극된 군과 LPS로 자극된 군간에 차이가 없었다. 이는 연구자들이 사용한 세포가 활성화 단핵세포였기 때문에 이파구가 포함되지 않아서 세포내 상황을 그대로 반영하지 못했다고 보인다. 그러나 결핵균과 LPS로 자극하였을 때 사람의 말초혈액 단핵세포에서 발현되는 IL-8과 MCP-1에 차이가 있다는 보고도 있어 19) 향후 RANTES와 IL-8 뿐 아니라 다른 chemokine까지 연구에 포함시키면 세포내 상황을 보다 정확히 파악할 수 있을 것이다.

결핵균주의 특성여부에 대해 세포내 반응의 차이에 대해서는 최근 많은 보고가 있어 왔다. Erdman과 H37Ra LAM으로 쥐의 골수세포에서 분리한 대식세포를 자극하였을 때 TNFα의 생성에 차이가 있는고 IFNγ에 대한 반응에도 차이가 있다는 보고가 있다 20). 또한 결핵균주의 특성이 따라서 쥐의 대식세포에서 inducible nitric oxide synthase(iNOS)의 생성에도 차이가 있다는 보고가 있다 21). iNOS는 nitric oxide(NO)를 생성시키고 oxygen radical과 반응하여 세균을 죽일 수 있는 reactive nitrogen intermediate(RNI)을 생성하는다는 의미에서 결핵의 병원에 중요한 역할을 할 것으로 추정된다. 그리고 iNOS는 TNFα, IL-1β와 IFNγ와 같은 cytokine의 자극에 의해서 발현되며, iNOS 생성의 차이는 결핵은 염증세포에서 생성되는 cytokine의 차이로 볼 수 있으므로 본 연구의 가설과 부합함을 시사한다. 그러나 본 연구에서는 말초혈액 단핵세포에서 TNFα와 IL-1β의 생성이 결핵균주의 특성여부에 따라 차이가 없었다.

A549 세포에서 RANTES와 IL-8의 유전자 발현은 H37Ra로 자극한 군에서 유의하게 증가하였으나 RANTES와 IL-8의 생성은 유의한 차이가 없었다. IFNγ로 처리하지 않았을 때 IL-8의 생성이 H37 Ra로 자극한 군에서 유의하게 증가하였으나 IL-8의 농도에 따른 chemotactic activity를 감안하면 이 병의 차이가 생체내에서 유의한 차이를 초래하리라 생각되지 않는다. 지금까지 보고된 결과는 달리 결핵균주의 특성여부에 따라 차이가 나지 않았던 것은 지금까지의 실험이 주로 쥐의 대식세포를 대상으로 하였고 본 연구에서는 사람의 단핵세포를 이용하였기 때문이라고 추정된다. 또한 본 연구에서는 Erdman 대신 H37Rv를 사용하였고, 결핵균에서 추출한 LAM 대신에 결핵균으로 직접 자극하였던 점들이 영향을 미쳤을 것이라고 추정된다. 그리고 본 연구에서 대상으로 삼았던 정상인들이 대부분 병원에서 근무하는 의사들이라서 결핵균에 이미 많이 노출되었기 때문에, 임상 환자에서 정상인이라 보기가 어렵고 개인차에 따른 반응이 차이가 있어 결과를 의미있게 만들었는 가능성도 있다고 생각된다.

결핵균주의 독성여부뿐 아니라 결핵균에 대해 생체의 감수성 여부에 따라 chemokine 및 iNOS의 생성이 다르다는 보고들이 있어 흥미롭다. BCG-sensitive mice에서 분리한 대식세포의 BCG-resistant mice에서 분리한 대식세포간에 IFNγ에 대한 반응이 다르다고, cytokine과 iNOS의 생성에 차이가 있다는 보고가 있다 22). BCG-sensitive mice와 BCG-resistant mice간의 감수성의 차이가 iNOS 보다는 natural resistance associated macrophage protein 때문이라는 보고도 있지만 23), 감수성의 차이가 결국 대식세포에서 생성되는 cytokine의 적절성에 있다고 하는 부분은 염증세포에서 분비되는 cytokine이 결핵의 병태생리에 중요한 역할을 한다는 것을 시사한다. 결핵환자중에는 모든 항결핵제에 감수성이 있고 항결핵제를 꾸준히 복용하는데도 결핵이 악화되는 환자들을 잔상에서 드물지 않게 보게 되는데 이런 환자들의 chemokine 생성능력을 본 실험에서 사용된 실험 모델을 이용하여 연구해 보면 결핵의 병태생리에 이해하는데 도움이 될 것이다. 본 연구에서는 단순히 말초혈액 단핵세포를 사용하였는데, 사람의 단핵세포와 임파구가 같이 배양하는 방법을 사용하면 결핵균의 정
상인간에 IFNγ의 생성에 차이가 있다고 보고된 것이 있어 조혈액 단핵세포와 임파구를 같이 배양하는 방법을 사용하는 것이 생체내 상황을 좀더 근절하게 반영하려 생각한다.

결론적으로 기도상피세포가 에볼루션에서 RANTES와 IL-8과 같은 강력한 chemokine를 분비하며 염증 반응을 증폭시킴으로써 에볼루션의 방어력, 면역력으로 참여를 추정할 수 있었다. 그러나 조혈액 단핵세포에서의 TNFα와 IL-1β의 생성은 면역구주의 독성 여부에 따라 차이가 있었고, A549 세포에서도 RANTES와 IL-8의 유전자 발현은 H37Rv가 유의하게 증가하였으나 RANTES와 IL-8의 생성은 유의한 차이가 없었다. 결과적으로 면역구주의 병변에 따른 생체의 면역반응 복잡화에 chemokine의 생성이 차이에 따라 다른 연구의 가설을 증명할 수는 없었다. 에볼루션의 병변이 동반한 환자로 설명하는 뿐만 아니라, 생체반응을 실제와 보다 비슷하게 반영할 수 있는 실험모델을 사용하면 가설의 증명도 가능하리라 기대한다.

요 약

연구배경: 
저자들은 최근 면역구의 작용에 의해 peripheral blood monocytes (PBM)에서 IL-1β와 TNFα가 생성되고, 기도상피세포에서는 IL-8과 RANTES와 같은 chemokine가 생성되는 사실을 발견 하였다. 이와같은 사실은 기도상피세포의 IL-1β와 RANTES와 같은 chemokine가 분비함으로써 에볼루션의 방어력, 면역력으로 참여할 수 있다고 하였다.

기도상피세포에서 발생하는 chemokine들이 에볼루션의 병태생리에 관여한다면, 에볼루션을 일으키는 독성을 가진 균주인 H37Ra와 에볼루션을 일으키지 않는 균주인 H37Rv로 자극하였을 때 기도상피세포에서 chemokine의 생성이 다른 것이라는 가정이 가능하다. 실험으로 독성을 가지고 있는 Erdman 균주와 독성을 가지고 있지 않은 H37Ra의 lipoarabinomannan (LAM)의 구조가 다르고, 이 LAM으로 대식세포를 자극하였을 때 H37Ra LAM은 대식세포에서 TNFα를 생성시키지만 H37Rv LAM은 TNFα를 생성시키지 못하고 이와같은 차이가 에볼루션에 대한 생체의 방어기전을 설명한다는 보고가 있다.

본 연구는 에볼루션의 병태생리에서 기도상피세포의 역할을 규명하고자, 독성이 있는 균주인 H37Rv와 독성이 없는 균주인 H37Ra를 사용하여 에볼루션의 독성 여부에 따른 기도상피세포에서 분비되는 chemokine의 차이를 연구하고자 하였다.

방 법:
정상인에서 채취한 조혈액에서 조혈액 단핵세포 (PBM)를 분리하여, sonicated H37Rv, H37Ra (5 x 10⁵ bacilli, ATCC) 또는 LPS (10 μg/ml)로 자극하면서 24시간 동안 배양하였다. 또한 에볼루션에 대한 interferon gamma (IFNγ)의 영향을 평가하고자 PBM을 경구로 자극하기 한 시간전에 IFNγ (10 ng/ml, R & D)로 전처리한 군과 IFNγ 전처리 없이 자극한 군을 두었다. 24시간 후 상충액을 채취하여 상충액의 일부는 -70℃에서 보관하였고, 이후 ELISA kit (R & D)를 이용하여 TNFα와 IL-1β의 농도를 측정하였다.

배양된 PBM의 상충액 (1:2 복제액)으로 배양된 A549 세포를 다시 자극하면서 24시간 동안 배양하였다. 24시간 배양후, 상충액은 IL-8, RANTES의 양을 위해 -70℃에서 보관하고, 남아있는 A549 세포에서 tRNA를 추출하였다. 배양 상충액에서 는 ELISA kit (R & D)를 이용하여 IL-8, RANTES의 농도를 측정하였고, 추출한 tRNA는 Northern blot analysis을 이용하여 IL-8, RANTES의 mRNA의 양을 측정 정량하였다.

결 과:
조혈액 단핵세포를 LPS, H37Rv, 또는 H37Ra로 자극하였을 때 대조군에 비하여 TNFα와 IL-1β의 생성이 유의하게 증가하였다. 독성이 없는 H37Rv로 자극하였을 때가 독성이 있는 H37Ra로 자극하였을 때보다 TNFα와 IL-1β의 생성이 많았으나 동
계적인 유의성은 없었다. IFN-γ로 전처치하였을 때 TNFα와 IL-1β의 생성이 전처치하지 않은 군에 비해 증가하였으나 H37Rv 군과 H37Ra 군 사이에 통계적으로 유의한 차이는 없었다.

A549 세포를 결핵균이나 LPS로 자극한 말초혈액 단핵세포 배양액으로 자극하였을 때, RANTES와 IL-8의 유전자 발현이 대조군에 비하여 의미있게 증가하였다 (p<0.001). 또한 H37Ra 배양액으로 자극한 군에서 H37Rv 배양액으로 자극한 군에 비하여 RANTES와 IL-8의 유전자 발현이 의미있게 증가하였다 (p<0.05).

A549 세포를 결핵균이나 LPS로 자극한 말초혈액 단핵세포 배양액으로 자극하였을 때 RANTES와 IL-8의 생성이 대조군에 비하여 의미있게 증가하였다. 그러나 유전자 발현이 다른 H37Ra 배양액으로 자극한 군에서 H37Rv 배양액으로 자극한 군에 비하여 RANTES와 IL-8의 생성이 증가하였지만 통계적인 유의성은 없었다.

결론:
기노상피세포는 폐결핵에서 RANTES와 IL-8과 같은 강력한 chemokine를 분비하여 염증반응을 증폭시키므로써 폐결핵의 병인에 능동적으로 참여함을 추정할 수 있었다. 그러나 말초혈액 단핵세포에서의 TNFα와 IL-1β의 생성은 결핵균의 독성여부에 따라 차이가 없었고, A549 세포에서도 RANTES와 IL-8의 유전자 발현은 H37Ra에서 유의하게 증가하였으나 RANTES와 IL-8의 생성은 유의한 차이가 없어 결핵균의 독성 여부가 균주에 따른 생체의 면역반응 중 chemokine 생성의 차이 때문이라는 본 연구의 가설을 증명할 수는 없었다.

Acknowledgement

이 논문은 1996년도 대한결핵 및 호흡기학회 학술연 구비의 지원을 받았고, 부분적으로 삼성건강기지 부장 삼성생명과학연구소 (C-95-007-3) 연구비의 지원을 받아 수행되었습니다.

참고 문헌

1. 한 용철: 임상호흡기학, p165. 서울, 일각각, 1990
2. 보건복지부, 대한결핵협회: 제7차 전국결핵실험조사 결과. p13, 서울, 1996
tor, and interleukin-6 and interleukin-8 in bronchial epithelial cells of patients with asthma. J Allergy Clin Immunol. 89 : 1001, 1992
24. Brown DH, LaFuse W, Zwilling BS: Cytokine-mediated activation of macrophages from