From a biomechanical standpoint, the main pathologic abnormality of fifth metatarsal stress fracture is the location where repetitive tensile stress concentrated. Decreasing tensile force in this region would be a proper treatment. Therefore, the purpose of this study is to evaluate the precise sagittal and coronal location of the fifth metatarsal stress fracture. Between June 2012 and May 2013, 38 athletes with a fifth metatarsal stress fracture were treated. To evaluate the precise sagittal location of the fracture, the entire length of the fifth metatarsal was measured and the distance from tuberosity to the fracture line was measured. To evaluate the precise coronal location of the fractures, coronal computed tomography images were obtained for incomplete fracture cases. The fracture location was classified as four quadrants. Thirty patients were classified into zone III fracture. However, the fracture is located in zone II for remaining eight cases. The median value of ratio between whole length and the distance from tuberosity to the fracture was 0.35 (range, 0.29–0.40). Among 33 incomplete fracture cases, there were 28 patients whose fracture developed in plantolateral quadrant, four patients at the lateral side and a patient for plantar side. The main pathologic abnormality is at the plantar lateral side because of the repetitive stress concentrated there.

Keywords: Metatarsal bones, Fracture, Stress
Introduction

There has been much controversy and confusion regarding fractures of the proximal fifth metatarsal since 1902, when Sir Robert Jones proposed a series of four such cases, including his own injury. Quill proposed a useful classification for the fracture patterns that occur in the proximal fifth metatarsal. The classification scheme divides fractures in this region of the foot into tuberosity avulsion fractures, acute Jones fractures, and proximal diaphyseal stress fractures. The fifth metatarsal stress fractures were reported to develop in proximal diaphysis as zone III. He reported that each of these fracture patterns has its own mechanism of injury, specific location, treatment options, and prognosis regarding delayed union and nonunion. However, Zwitser and Breederveld reported that the distinction between Jones and proximal diaphyseal fractures is often difficult because of their close anatomic proximity. Although reports in the literature have indicated the potential difficulties in the treatment of Jones fractures, prevailing guidelines for their management are ambiguous. It is important to note that zone II fracture could be a metatarsal stress fracture.

Intramedullary screw fixation has become a most popular method for the surgical management of Jones fractures. However, it is criticized that it is not a causal treatment. From a biomechanical standpoint, the main pathologic abnormality of fifth metatarsal stress fracture is the location where repetitive tensile stress concentrated. Therefore, it is important to decrease tensile force in this region by conservative means such as using insole or to change tensile force into compressive force by surgical means like tension band wiring in the treatment of fifth metatarsal stress fracture.

Therefore, the purpose of this study is to evaluate the precise sagittal and coronal location of the fifth metatarsal stress fracture.

Methods

Approval from our Institutional Review Board was obtained. Between June 2012 and May 2013, 38 patients (all males) with a fifth metatarsal stress fracture were treated using modified tension band wiring. This consecutive series of patients had a mean age 19.3 years (range, 14 to 29 years) at surgery. Among the 38 cases, 13 were right-sided and 25 were left-sided. Thirty-four patients were soccer players, one patient was a boxer, one a handball player, and two were basketball players. There were two cases of Torg type I, 34 cases of type II, and two cases of type III. According to the classification by Lee et al., there were two type A1, three type A2, 25 type B1, and eight type B2. All patients were treated using modified tension band wiring, and inlay bone grafting in cases with Torg's type III or Lee's type B2 fractures.

All subjects underwent anteroposterior, lateral, and 30-degree medial oblique radiographs of the feet. In addition, preoperative computed tomography (CT) scan was routinely performed to view fracture pattern and to evaluate coronal location of the fracture.

First, all the cases were classified according to Quill. Therefore, they were divided into tuberosity avulsion fractures (zone I), Jones fractures (zone II), and proximal diaphyseal stress fractures (zone III).

To evaluate the precise sagittal location of the fracture, the whole length of the fifth metatarsal was measured on a 30-degree internal oblique view. The distance from tuberosity to the fracture line was measured. The ratio between the entire length and the distance from tuberosity to the fracture was calculated (Fig. 1).

To evaluate the precise coronal location of the fracture, coronal CT images were obtained for incomplete fracture cases. For complete fracture cases, the fracture line was extended into medial cortex. Therefore, it was impossible to locate the osteolytic fracture region. However, for an incomplete fracture, the osteolytic fracture is located in specific region where the pathologic process has begun. Therefore, we limited the cases of incomplete fracture to evaluate the coronal location of the fifth metatarsal stress fracture. We chose one section of the coronal image that the largest seen osteolytic fracture region. The fracture location was classified into four quadrant as dorsomedial, dorsolateral, plantomedial, and plantolateral. When it is located between two quadrants, it was regarded as dorsal, plantar, medial or lateral. The quadrant was made as a reference to the line that is formed between the most inferior margin of the first metatarsal and fifth metatarsal (Fig. 2).

Results

Thirty patients were classified with zone III fractures. The
Fig. 1. The entire length of the fifth metatarsal was measured on a 30-degree internal oblique view. The distance from tuberosity to the fracture line was measured. The ratio between the entire length and the distance from tuberosity to the fracture (A, B) were calculated.

Fig. 2. The fracture location was classified into four quadrants: dorsomedial, dorsolateral, plantomedial, and plantolateral. The quadrant was made as a reference to the line formed between the most inferior margin of the first metatarsal and the fifth metatarsal. The second line was drawn parallel to this line centered to the fifth metatarsal center. The third line was drawn perpendicular to the second line centered to the fifth metatarsal.

The distinction between Jones and proximal diaphyseal fractures of the fifth metatarsal is confusing for many surgeons. A Jones fracture currently is defined as an acute fracture of the fifth metatarsal at the junction between the proximal diaphysis and metaphysis of the fifth metatarsal without distal extension beyond the fourth to fifth intermetatarsal articulation. The mechanism of injury is believed to be an abduction force applied to the forefoot with simultaneous ankle plantar flexion. A proximal diaphyseal fifth metatarsal stress fracture is defined as a stress fracture in the zone of the proximal fifth metatarsal immediately distal to the Jones fracture’s anatomic area. The mechanism of this injury is believed to be a repetitive load applied under the metatarsal head over a relatively short time, resulting in an overuse phenomenon. However, Polzer et al. reported in their review article that it is not necessary to differentiate between these two diagnoses. Chuckpaiwong et al. also reported that they did not find a reason to distinguish between fractures of the fifth metatarsal in these two locations. They suggest referring to fifth metatarsal base fractures (excluding avulsions) as Jones fractures. The results in our patients are similar to results of patients reported in their studies. In this study, in many of the patients (30/38) the fractures developed in zone III. But, there were no patients whose fracture developed in zone I. We observed that in 21% (8/38) of the patients, the fractures were located in zone II. Therefore, there is no meaning to differentiate the stress fractures based on their anatomic location into Zone II
or Zone III. Regardless of zonal classification, the sagittal location of the fracture is the 35th percentile (range, 29–40) area from tuberosity for the entire length of the fifth metatarsal.

There have been many reports about sagittal location of the fifth metatarsal stress fracture and fracture of the fifth metatarsal base. To our knowledge, there is no report of coronal location of the fifth metatarsal stress fracture. According to Lee et al., patients with a wide plantar gap preoperatively usually do not have a good outcome; they require more time for bone union and have complications more frequently. The plantar gap was defined as the distance between the fracture margins seen on a standard oblique X-ray view of the foot that showed the plantar lateral side of the fifth metatarsal. However, it was based on simple X-ray. This study is the first report of coronal location of the fifth metatarsal stress fracture using CT analysis.

We observed that osteolytic fracture region was located in the plantolateral quadrant on coronal CT image for all of the incomplete fifth metatarsal fracture. In addition, there was no patient for which the osteolytic fracture region was located in dorsal or medial side. This observation could be an evidence of the plantar gap. This is the region where tensile force is concentrated. The plantar lateral side is displaced more because of tension forces. On the other hand, the dorsomedial side is not displaced due to compressive forces. An increase in the stress reaction to repetitive tensile forces in this region can cause the gap to expand, and this might be correlated with a poor prognosis.

Strategies for operative intervention include intramedullary screw fixation, bone grafting, and tension band wiring. Intramedullary screw fixation has become a popular method for the surgical management of Jones fractures, and several reports have described increased union rates and rapid recovery. However, many recent reports have described failures after screw fixation in athletes. In the literature, the tension band wiring technique has been mentioned as an alternative method for treating proximal fractures of the fifth metatarsal. For such reasons of this study and from a biomechanical standpoint, the main pathologic abnormality is at the plantar lateral side because of the repetitive stress concentrated there. Therefore, it is important to decrease tensile force in this region.

Limitations of this study is that we did not have a choice to use weight-bearing CT. Instead, we routinely draw a line that is formed between the most inferior margin of the first metatarsal and fifth metatarsal. This line is not parallel to the sole, but it is thought to be enough to divide the fifth metatarsal into four quadrants.

In conclusion, the fifth metatarsal stress fracture was not limited in zone III, but zone II. The precise sagittal location of the fracture is distally 35 percentiles (range, 29–40) area from tuberosity for whole length of the fifth metatarsal. The precise coronal location of the fracture is plantar and lateral side of the bone. According to this, the main pathologic abnormality is at the plantar lateral side because of the repetitive stress concentrated there. Therefore, it is important to decrease tensile force in this region.

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

References

8. Torg JS, Balduini FC, Zelko RR, Pavlov H, Peff TC, Das M.