Defining Chronic Cough: A Systematic Review of the Epidemiological Literature

Woo-Jung Song,1 Yoon-Seok Chang,1,2 Shoaib Faruqi,3 Min-Koo Kang,1 Ju-Young Kim,1 Min-Gyu Kang,4 Sujeong Kim,5 Eun-Jung Jo,5 Seung-Eun Lee,6 Min-Hye Kim,7 Jana Plevkova,8 Heung-Woo Park,1 Sang-Heon Cho,1* Alyn H. Morice1*

1Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
2Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
3Centre for Cardiovascular and Metabolic Research, Hull York Medical School, Castle Hill Hospital, University of Hull, Cottingham, East Yorkshire, United Kingdom
4Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
5Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
6Department of Internal Medicine, Pusan National University College of Medicine, Busan, Korea
7Department of Internal Medicine, Ewha Woman’s University School of Medicine, Seoul, Korea
8Department of Pathophysiology and Simulation Centre, Jessenius Faculty of Medicine, Comenius University, Martin, Slovak Republic

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Purpose: Recent evidence suggests a global burden of chronic cough in general populations. However, the definitions vary greatly among epidemiological studies, and none have been validated for clinical relevance. We aimed to examine previous epidemiological definitions in detail and explore the operational characteristics. Methods: A systematic review was conducted for epidemiological surveys that reported the prevalence of chronic cough in general adult populations during the years 1980 to 2013. A literature search was performed on Pubmed and Embase without language restriction. Epidemiological definitions for chronic cough were classified according to their components, such as cutoff duration. Meta-analyses were performed for the male-to-female ratio of chronic cough prevalence to explore operational characteristics of epidemiological definitions. Results: A total of 70 studies were included in the systematic review. The most common epidemiological definition was identified as ‘cough ≥3 months’ duration without specification of phlegm (n=50); however, it conflicted with the cutoff duration in current clinical guidelines (cough ≥8 weeks). Meta-analyses were performed for the male-to-female ratio of chronic cough among 28 studies that reported sex-specific prevalence using the most common definition. The pooled male-to-female odds ratio was 1.26 (95% confidence interval 0.92-1.73) with significant heterogeneity (I²=96%, P<0.001), which was in contrast to clinical observations of female predominance from specialist clinics. Subgroup analyses did not reverse the ratio or reduce the heterogeneity. Conclusions: This study identified major issues in defining chronic cough in future epidemiological studies. The conflict between epidemiological and clinical diagnostic criteria needs to be resolved. The unexpected difference in the gender predominance between the community and clinics warrants further studies. Clinical validation of the existing definition is required.

Key Words: Cough; epidemiology; definition

INTRODUCTION

Cough is an essential mechanism for protecting airways, but is also one of the most common symptoms that lead patients to seek medical attention.1 In particular, chronic cough has a high global health burden, affecting about 10% of general adult populations.2 Chronic cough is a significant health issue due to its substantial impact on quality of life,3 and it causes many clinical challenges.4,5

In the past, chronic cough was understood to be a consequence of several diseases affecting airway sensory nerve terminals, such as rhinitis, gastroesophageal acid reflux, and eosinophilic airway diseases.6,7 However, many patients with these diseases do not report cough,6,7 suggesting that chronic cough,
although associated, may be a separate condition. Moreover, diagnostic and therapeutic failures have been reported in a substantial proportion of patients with the classic causes of chronic cough (12%-44%).⁶ Therefore, cough hypersensitivity syndrome, a new paradigm has recently been formulated to understand chronic cough as a clinical syndrome with a common intrinsic pathophysiology (cough hypersensitivity).⁹⁻¹² This recent paradigm shift in understanding chronic cough warrants further epidemiological characterization. However, in our recent meta-analyses of prevalence studies, substantial methodological heterogeneity was found among the existing epidemiological definitions.¹ Moreover, to the best of our knowledge, none of these definitions have been validated for clinical relevance. To further advance understanding of this disease, a consensus definition needs to be developed. Using a systematic literature review, this study examined previous epidemiological definitions utilized in general population surveys reporting the prevalence of chronic cough and explored the operational characteristics of the most common definition. We hope to open a field of discussion toward consensus development for the definition of chronic cough in further epidemiological studies.

MATERIALS AND METHODS

Data sources and searches

A systematic search was conducted of the Pubmed and Embase databases for the literature that measured the prevalence of chronic cough in community-based adult populations, as previously described.² The search terms were “cough AND (epidemiology OR epidemiologic OR epidemiological OR prevalence OR incidence)” for articles published in peer-reviewed journals between January 1980 and December 2013. Additional searches were performed in Google Scholar (http://scholar.google.com) and via cross-referenced articles. Language was not restricted. In cases where full-text links were not available, we contacted the corresponding authors by email for the full text. The systematic review process followed the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement (Fig. 1).¹³

Study selection

Studies were initially included if they met the following criteria: (1) cross-sectional or longitudinal studies conducted in community-based or unselected adult populations and (2) reported prevalence of chronic cough. Various definitions of chronic cough were accepted due to the lack of a validated definition. However, here we ultimately included studies only if their diagnostic terms were chronic cough, or other conceptually equivalent terms, such as long-term, longstanding, or persistent cough. We excluded studies with bronchitis, or cough but without including any conceptual terms for chronicity in their diagnostic labels. Other exclusion criteria were as follows: (1) no relevant analyses, (2) convenience sample studies without detailed...
The quality effects model gives greater weight to studies of high quality than those of low quality, as it uses the quality scores assigned to individual studies; however, the random effects model due to a considerable heterogeneity may be more appropriate statistical method to obtain a pooled ratio. However, we also presented the pooled estimates by the random effects model for comparison.

Subgroup analyses were performed to explain the heterogeneity, according to study year (before vs after 2000), region, age group (non-elderly vs elderly), and study quality (quality score ≤9 vs ≥10). Evidence of publication bias was assessed by applying the Peters test to funnel plots of the natural log of OR. Quality effects meta-analyses were performed using MetaXL software version 2.0 (http://www.epigear.com), and all other statistical analyses were conducted using Stata software package release 12.0 (Stata Corp., College Station, TX, USA).

RESULTS

Baseline description

A total of 70 articles met the inclusion criteria (Fig. 1). Nineteen articles that had been included in previous meta-analyses for prevalence were excluded here because their diagnostic terms were determined not to specifically intend chronic cough (such as ‘chronic bronchitis’, ‘frequent cough’, or just ‘cough’ in their terms). The characteristics of the 70 articles included and the 19 article excluded are summarized in Appendix Tables S1 and S2, respectively. The quality scores of the included studies are described in Appendix Table S3.

Cutoff duration for defining chronic cough

Several diagnostic terms were identified from the 70 studies included, such as chronic cough (n=56), chronic cough with phlegm (n=4), long-standing cough (n=5), long-term cough (n=2), and persistent cough (n=3) (Appendix Table S4). By cutoff duration, cough ≥3 months was by far the most common criterion (n=55), and cough ≥8 weeks was the second (n=3) most common. Eleven studies did not specify a cutoff duration for defining chronic cough (Table 1).

Based on the research purpose of individual articles (Appendix Table S3), 13 studies were classified as having chronic cough as the primary outcome. Cough ≥3 months was again the most common cutoff criterion (n=7), and cough ≥8 weeks was the second (n=3) most common. One study used cough ≥3 weeks, and the remaining 2 studies did not use a cutoff duration for cough (Table 1).

Time trends in the utilization of cutoff duration for defining chronic cough were examined (Fig. 2). Over the last 3 decades, the overall number of epidemiological studies for chronic cough had continuously increased, but cough ≥3 months remained the most frequently used criterion. Other cutoff criteria, such as 8 or 3 weeks, have only been found in recent studies published during 2001-2013. In a subgroup analysis of 13 studies with chronic cough as the primary outcome, cough ≥3 months remained the most common criterion, but the proportion of cough ≥8 weeks was higher than in the analysis of all studies (Fig. 2).
Epidemiological Definitions of Chronic Cough

Other components for defining chronic cough

Most studies did not differentiate by the presence of phlegm in their reporting the prevalence of chronic cough (n = 64). This preponderance was similarly observed in a subgroup analysis of 13 studies with chronic cough as the primary outcome (Table 1). Of 6 studies that utilized a phlegm component, none quantified or specified the diagnostic criteria for phlegm in detail. Based on the ways of measuring prevalence, the majority of studies (n = 60) were classified as using period prevalence (12-month prevalence), whereas 6 studies used point prevalence (Table 1). The proportion of using point prevalence was higher in the subgroup of studies that analyzed chronic cough as the primary outcome (5 of 13).

Chronic cough by gender

Next, we examined the operational characteristics of the most common definition (n = 50, cough ≥ 3 months [12-month prevalence] with no specification on phlegm, i.e., using a question, “Do you usually cough on most days for 3 consecutive months or more during the year?”) in relation to a male-to-female ratio of chronic cough prevalence because female predominance is a common finding among patients visiting cough clinics in several countries. This meta-analysis included 28 studies (56%) that specified sex-specific prevalence.

Sex-specific pooled prevalence was 9.6% (95% CI 6.0-14.1%, I²=99%, P<0.001) in males, and 8.6% (95% CI 5.2-12.8%, I²=99%, P<0.001) in females by the quality effects model. The pooled male-to-female ratio of chronic cough prevalence was OR 1.26 (95% CI 0.92-1.73) (Fig. 3) with a significant level of heterogeneity (I²=96%, P<0.001) but no significant funnel plot asymmetry (Peters test, P=0.592). Male preponderance was also observed by random effects model analyses (OR 1.45, 95% CI 1.20-1.75; Appendix Fig. S1).

The current smoking rate was correlated with chronic cough prevalence at population levels (r = 0.378, P = 0.009), and was markedly higher among males than females (40.8 ± 13.3% vs

Table 1. Component of chronic cough definitions utilized in epidemiological studies

<table>
<thead>
<tr>
<th>Component</th>
<th>All studies (n = 70)</th>
<th>Studies with chronic cough as primary outcome (n = 13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 3 months</td>
<td>19-21,23,24,27,28,30,32,33,36,37,47,49,50,52,53,55,60,62-65,67-81,83-88</td>
<td>19,23,24,30,50,73,81</td>
</tr>
<tr>
<td>≥ 8 weeks or 2 months</td>
<td>31,34,35</td>
<td>31,34,35</td>
</tr>
<tr>
<td>≥ 3 weeks</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>No specific description</td>
<td>23,28,29,48,51,58,59,68,82</td>
<td>23,28</td>
</tr>
<tr>
<td>Combined phlegm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes (productive cough)</td>
<td>24,28,47,50,61</td>
<td>24</td>
</tr>
<tr>
<td>No (dry cough)</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>No specific description</td>
<td>19,23,25,27,46,48,49,51,60,62-73,75,88</td>
<td>19,22,23,25,29,31,34,35,51,73,81</td>
</tr>
<tr>
<td>Prevalence measure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-month prevalence</td>
<td>20,21,23,24-26,33-36,39,40,45,47-71,73,88</td>
<td>23,24,29,31,50,73,81</td>
</tr>
<tr>
<td>Point prevalence</td>
<td>19,22,25,34,36,72</td>
<td>19,22,25,34,36</td>
</tr>
<tr>
<td>No specific description</td>
<td>56,57,58,66</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. Time trends in the utilization of definitions in epidemiological studies. (A) Time trends among all articles which reported the prevalence of chronic cough (n = 70). (B) Time trends among a subgroup of articles which reported the prevalence of chronic cough as the primary outcome (n = 13).
In previous analyses, we found a global pooled prevalence of chronic cough of 9.6% with a wide geographical distribution. Here, we examined previous epidemiological definitions and their differences, and explored the operational characteristics of the most common definition in relation to the male-to-female ratio.

The high frequency of using 3 months as the cutoff for chronic cough in epidemiological studies may be attributed to the use of major standardized questionnaires in respiratory epidemiology. The British Medical Research Council (BMRC) questionnaire was the first one, particularly developed for the epidemiology of chronic bronchitis in the 1960s. A reference paper stated that to define “chronic,” quantitative terms must be introduced into the definition, and at present this must be done more or less arbitrarily, and that the phrase “chronic or recurrent” has usually been accepted as implying that expectoration has occurred on most days during at least three consecutive months for more than 2 successive years. This cutoff duration for “chronic” remained in use in later major protocols of the European Community for Coal and Steel (ECSC)-87 and the American Thoracic Society with the Division of Lung Diseases (ATS-DLD)-78. The ECSC-87 and ATS-DLD-78 questionnaires had modified the BMRC questionnaire by asking for a seasonal association of cough, from in the winter to no specification of season, but not the cutoff duration for chronicity in cough and phlegm. The use of 3 months’ cutoff duration has been maintained in recent large-scale population surveys in Europe, including the European Community Respiratory Health Survey (ECRHS) since the 1990s.

It may be advantageous to utilize these major questionnaires in further population surveys for chronic cough, as they have been extensively validated and have presented little risk for bias from the mode of administration. However, a major dilemma is that the questionnaires were not developed or validated for chronic cough specifically. Moreover, the criterion of 3 months’ duration conflicts with the criterion of 8 weeks’ duration used in major clinical guidelines for chronic cough in adults. However, because neither of them was evidence-based, but rather arose from expert opinions, neither can be viewed as “correct.” Before the publication of current clinical guidelines, a ≥3 weeks’ duration had often been utilized in clinical studies of chronic or persistent cough, as common colds were considered to usually resolve within 3 weeks; however, a later consensus was made as 8 weeks because post-infectious cough often persists longer than 3 weeks. Meanwhile, in a recent international qualitative study, significant variation was still observed in the definition of chronic cough used in clinical prac-
Table 2. Sub-group analyses for sex associations of chronic cough

<table>
<thead>
<tr>
<th>Classification</th>
<th>Parameter</th>
<th>Number of studies</th>
<th>Number of subjects</th>
<th>Quality effects OR (95% CI)</th>
<th>Random effects OR (95% CI)</th>
<th>ρ</th>
<th>P value for ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td></td>
<td>28</td>
<td>135,327</td>
<td>1.26 (0.92-1.73)</td>
<td>1.45 (1.20-1.75)</td>
<td>96%</td>
<td><.0001</td>
</tr>
<tr>
<td>Study year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1980-1999</td>
<td></td>
<td>19</td>
<td>107,160</td>
<td>1.28 (0.85-1.91)</td>
<td>1.58 (1.23-2.02)</td>
<td>97%</td>
<td><.0001</td>
</tr>
<tr>
<td>2000-2013</td>
<td></td>
<td>9</td>
<td>28,167</td>
<td>1.17 (0.91-1.50)</td>
<td>1.20 (0.97-1.48)</td>
<td>76%</td>
<td><.0001</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Africa</td>
<td></td>
<td>2</td>
<td>18,265</td>
<td>1.47 (0.66-3.28)</td>
<td>1.33 (0.61-2.88)</td>
<td>80%</td>
<td>0.027</td>
</tr>
<tr>
<td>America</td>
<td></td>
<td>4</td>
<td>9,811</td>
<td>1.05 (0.87-1.27)</td>
<td>1.08 (0.90-1.30)</td>
<td>54%</td>
<td>0.091</td>
</tr>
<tr>
<td>Asia</td>
<td></td>
<td>7</td>
<td>24,366</td>
<td>1.16 (0.76-1.79)</td>
<td>1.18 (0.81-1.71)</td>
<td>86%</td>
<td><.001</td>
</tr>
<tr>
<td>Europe</td>
<td></td>
<td>14</td>
<td>78,825</td>
<td>1.31 (0.82-2.08)</td>
<td>1.77 (1.31-2.38)</td>
<td>98%</td>
<td><.001</td>
</tr>
<tr>
<td>Oceania</td>
<td></td>
<td>1</td>
<td>4,060</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elderly-specific (≥60-70 years)</td>
<td></td>
<td>3</td>
<td>6,619</td>
<td>0.94 (0.79-1.11)</td>
<td>0.95 (0.80-1.12)</td>
<td>0%</td>
<td>0.700</td>
</tr>
<tr>
<td>Non-elderly-specific (<60-70 years)</td>
<td></td>
<td>13</td>
<td>84,658</td>
<td>1.27 (0.80-2.00)</td>
<td>1.64 (1.21-2.23)</td>
<td>98%</td>
<td><.0001</td>
</tr>
<tr>
<td>Others (all ages)</td>
<td></td>
<td>12</td>
<td>44,050</td>
<td>1.35 (1.07-1.71)</td>
<td>1.40 (1.15-1.70)</td>
<td>76%</td>
<td><.0001</td>
</tr>
<tr>
<td>Quality score</td>
<td>≤9</td>
<td>22</td>
<td>77,492</td>
<td>1.34 (1.03-1.75)</td>
<td>1.45 (1.18-1.77)</td>
<td>91%</td>
<td><.0001</td>
</tr>
<tr>
<td>≥10 (max. 11)</td>
<td></td>
<td>6</td>
<td>57,835</td>
<td>1.20 (0.68-2.12)</td>
<td>1.45 (0.93-2.27)</td>
<td>99%</td>
<td><.0001</td>
</tr>
</tbody>
</table>

OR, odds ratio; 95% CI, 95% confidence interval; NA, not applicable.

We thus could not confirm the gender associations of chronic cough possibly leading to less medical attendance among them. Meanwhile, females have more frequent complications from cough, such as incontinence.122

The discrepancy in sex-specific associations of chronic cough between community and clinics also leads to the speculation that the current duration-based definition does not easily differentiate clinically relevant cough from a protective cough response. As suggested by the cough-smoking correlations, chronic cough among smokers may be a protective response against irritant inhalation. However, chronic cough patients are frequently never smokers123,124 and have troublesome cough in response to various trivial triggers, such as cold air, singing/talking, or fatigue/stress,123-125 which represents a hypersensitive cough response. Thus, if we aim to identify subjects with chronic cough that is clinically relevant, we may need to add some components to detect this hypersensitivity. Conventional tussigen inhalation cough reflex tests have limited utility, as there is a significant overlap between chronic cough patients and normal controls.11 It would be ideal to have an objective cough reflex test to define cough hypersensitivity for use in epidemiological surveys.

This study has several limitations. First, our meta-analysis of gender ratio included relatively few studies (n=28; 56%) and thus could not confirm the gender associations of chronic cough prevalence in the community populations. We attempted to
contact the corresponding authors by email, but could add sex-specific data in only a few cases. Second, the reasons for the heterogeneity in the pooled gender ratio were not clearly explained by our subgroup analyses. The heterogeneity may arise from the variability in the study designs, protocols, or demographic characteristics of included studies and participants. Among demographic factors, in particular, we suppose age and smoking could influence the gender ratio of chronic cough; however, the lack of available information did not allow us to perform meta-regression tests for smoking, or further subgroup analyses by age groups in detail.

Despite these limitations, this study has strength in that it is the first systematic review on the epidemiological definitions of chronic cough. We had no language restriction in retrieving the relevant publication from major databases, enabling the inclusion of non-English literature and the comprehensive review of existing definitions. Our meta-analysis had explorative nature for the reasons described above, but could identify the unexpected but clear heterogeneity and discrepancy in the gender preponderance between the community and clinics.

In conclusion, this study identified major issues for further epidemiological studies of chronic cough. First, cough ≥3 months’ duration was the most common definition, but it conflicts with the criterion of current clinical guidelines (cough ≥8 weeks). Moreover, both criteria were determined by expert opinions rather than clinical evidence. Thus, we may need to develop objective evidence for defining chronicity in cough. Second, we found unexpected discrepancies in the demographic profiles of chronic cough subjects between the community and clinics. This discrepancy needs to be comprehensively explained in further prospective studies, but also may raise a question about the appropriateness of using a duration-based definition for identifying clinically relevant chronic cough.

ACKNOWLEDGMENT

We gratefully acknowledge the help of GlaxoSmithKline (UK) in providing data translation assistance.

REFERENCES

105. von Hertzen L, Reunanen A, Impivaara O, Mäkiä E, Aromaa A. Epidemiological Definitions of Chronic Cough

121. Jorm LR, Shepherd LC, Rogers KD, Blyth FM. Smoking and use of primary care services: findings from a population-based cohort study linked with administrative claims data. BMC Health Serv Res 2012;12:263.

