An IgE-Mediated Allergic Reaction Caused by Mulberry Fruit

Jong Hyun Choi, Jae Kyoem Sim, Jee Youn Oh, Gyu-Young Hur,* Kyung Hoon Min, Sung Yong Lee, Jae Jeong Shim, Kyung Ho Kang

Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea

INTRODUCTION

Mulberry (Morus spp.) is a widespread deciduous tree and its fruit is commonly eaten in Korea and eastern Asia. Some reports demonstrate that mulberry fruit is a food allergen in the Mediterranean area. However, there has been no report of systemic allergic reactions after ingesting mulberry fruit in Korea. An 18-year-old boy with a mulberry fruit allergy visited our allergy clinic. He had experienced generalized urticaria, chest tightness, breathing difficulty, and abdominal cramping after ingesting mulberry fruit. The patient had a positive skin reaction to mulberry fruit extract (mean wheal size, 5 mm). We performed an ELISA to detect specific IgE antibody (Ab) to mulberry fruit extract in the patient’s serum compared to those of non-atopic healthy controls and birch-sensitized individuals. Specific IgE Ab to mulberry fruit extract was detected in the patient’s serum, as compared to non-atopic healthy controls. Another subject, who was strongly sensitized to birch pollen, also had a positive serum-specific IgE Ab to mulberry fruit. We performed IgE immunoblot analysis using the patient’s and the other subject’s sera, who had serum-specific IgE to mulberry fruit, to identify the IgE-binding component. An identical IgE-binding component to mulberry extract was detected in the two subjects at around 17 kDa, and which might be PR 10 of Bet v 1. In conclusion, mulberry fruit could induce a systemic allergic reaction through an IgE-mediated mechanism, and cross-reactivity might occur between mulberry fruit and birch pollen.

Key Words: Mulberry; allergen; food allergy; IgE

Case Report

http://dx.doi.org/10.4168/aair.2015.7.2.195
pISSN 2092-7355 • eISSN 2092-7363
For in vitro and in vivo tests, fresh mulberry fruit was purchased and extracted with phosphate-buffered saline (PBS [pH7.5], 1:5 w/v) at 4°C overnight. This extract was used for the enzyme-linked immunosorbent assay (ELISA), and immunoblot analysis. For SPT, the supernatants were mixed with an equal amount of sterile glycerin. SPT with mulberry fruit extract was also positive (mean wheal size, 5 mm). A non-specific bronchial challenge test with mannitol was performed to evaluate airway hyper-responsiveness, and it was positive [accumulated mannitol dose to cause a 15% fall in forced expiratory volume in 1 second (PD_{15}) was 60.3 mg]. The fraction of exhaled nitric oxide was 85 ppb. Specific IgE Ab to mulberry fruit extract was detected in the patient’s serum more than in non-atopic healthy controls (Fig. 1A). Another subject, who was strongly sensitized to birch pollen, was positive for serum-specific IgE antibody to mulberry fruit; NC, non-atopic controls.

DISCUSSION

Food allergy is a hypersensitive immune reaction after exposure to a particular food allergen. Its pathogenic mechanisms are mainly explained by IgE-mediated reactions. Generally, the overall prevalence of food allergy is reported as 1%-2%. In a Korean nationwide population study, food allergy prevalence was 3.3%-4.5% in schoolchildren. Considering causative food allergens, the prevalence of allergy to fruits and vegetables was estimated at 0.1%-4.3% according to a meta-analysis result. Pollen and edible plant products commonly cause pollen-food syndrome that typically manifests as oral symptoms, including tongue edema, lip/perioral swelling, and pruritus of the palate and lips. It is also known as oral allergy syndrome. These phenomena result from cross-reactive sensitizations to homologous allergens from pollen (e.g., birch).

Allergenic pollen contains several allergenic components including major and minor allergens. Major allergens are components to which the majority of sensitized patients react while minor allergens are ubiquitous molecules comprised of a cross-reaction of unrelated plant species, involved in general vital functions. These minor allergens are defined as panallergens,
in which profilins, non-specific lipid transfer proteins (ns-LTP), procalcins and so on.10 Pathogen-related (PR) proteins are a kind of “defense-related protein” produced in response to a pathogen in higher plants.11 Fourteen families of PR proteins are classified, and some members of them have demonstrated allergenicity. PR proteins have structural homologies in other families of plants. Among them, PR 10 protein has sequence homology to Bet v 1, the major allergen in birch pollen. Its molecular weight is 17.0 kDa. Many of the other PR 10-homologous allergens, including Rosaceae (apple and pear), Prunioideae (cherry and peach), and Apiaceae (celery and carrot), have cross-reactivity with Bet v 1. Therefore, all they can induce birch pollen-related oral allergy syndrome.12 Hemmer \textit{et al.} identified PR 10 allergens in Moraceae fruits including mulberry fruit, which cross-reacted with Bet v 1.13 Therefore, sensitization to PR 10 proteins can be a cause for the development of pollen-food syndrome.14 Profilins are a family of small molecules (12-15 kDa) that play a role in cytokinesis and cytoplasmatic polymerization.15 As profilin-specific IgE has cross-reactivity with homologies from virtually every plant source, individuals with sensitization to profilin have risk factors for allergic reactions to multiple pollen and food allergen sources.16 Plant ns-LTPs are identified as a kind of fruit allergens causing more severe systemic symptoms compared to birch-related allergens, which cause mild oral allergy syndrome. They are divided into 2 subfamilies according to their molecular masses; the 9-kDa ns-LTP1 and the 7-kDa ns-LTP2.17 There have been some reports on mulberry species allergy, in which ns-LTPs are major culprit allergens. Ciardiello \textit{et al.} isolated Mor n 3, a ns-LTP 1 from black mulberry and showed its allergenic activity.18 In addition, Micheal \textit{et al.} reported that they found a 10-kDa protein as a major allergen of paper mulberry pollen, a respiratory allergen, in Pakistan.19 Considering its molecular weight, it can be assumed as a kind of ns-LTP.

In this study, we report a case of systemic allergic reaction after ingestion of mulberry fruit. The patient was strongly sensitized to birch pollen, and had serum specific IgE to a mulberry fruit extract. These findings were suggested the presence of cross-reactivity between birch pollen and mulberry fruit. We identified an identical IgE binding component, at around 17 kDa, in the patient and another subject, strongly sensitized to birch pollen, and mulberry fruit extract confirmed by ELISA. It may have been PR 10 of Bet v 1-related molecules considering its molecular weight. This finding supports the presence of cross-reactivity between mulberry fruit and PR 10 of birch pollen.

In conclusion, we report a case of systemic allergic reaction caused by mulberry fruit in a patient with allergic rhinitis and asthma. This reaction might be explained as an IgE-mediated mechanism by detection of 17 kDa IgE-binding component to a mulberry fruit extract, which is identical to one found in birch pollen. In addition, this finding can be an evidence of cross-reactivity between mulberry fruit and birch pollen.

ACKNOWLEDGMENTS

This study was supported by a Korea University Grant (K0931 221).

ORCID

Gyu-Young Hur \textit{http://orcid.org/0000-0001-5039-1999}

REFERENCES

