Liver transplantation has been regarded as the definitive curative approach for pathologic liver conditions from the acute stage to the chronic end stage for decades. Recently, translational research has been focused on liver stem cell transplantation, using various cell therapies, due to the potential benefit of natural host liver regeneration. Many studies are ongoing utilizing and evaluating the use of either fetal-liver-derived stem cells or oval cells, however many obstacles still remain. Extensive research identifying and characterizing stem/progenitor cells for potential application to *in vitro* cell therapy, whereas many questions remain concerning the isolation and identification of adult liver stem cells with adequate capacity for proliferation and the regeneration of injured liver. Recent approaches to liver regeneration include the production of hepatocyte-like cells from other stem cell sources such as mesenchymal stem cells and embryonic stems cells. Another major target for liver regeneration studies include the generation of liver stem cells from induced pluripotent stem cells (iPSC) We review the current data concerning characterization of stem cells and progenitor cells for their capacity to support their potential for re-population and regeneration of normal adult liver from liver damaged due to injury and/or disease.

Key Words: Liver; Stem Cells; Cell Transplantation; Liver Regeneration

INTRODUCTION

All organs are composed of various kinds of cells that cooperate together to comprise the tissues that provide the structure and function of the organ. Due to normal aging, disease, and environmental insult, the functional capacity and even the structure of the organs are degraded over time. Tissue regeneration is essential for tissue repair and maintenance of organ function in the face of the ongoing insults.

In its normal physiological function, liver is an essential organ providing homeostatic stability for the entire organism, performing functions such as metabolic regulation, synthesis of essential hormones, digestive fluids, blood components and more; detoxification and purification of the blood and other tissue fluids; as well as clearance of senescent and diseased blood cells. It faces constant insult and injury in the course of its normal function, and therefore, unlike other organs, liver demonstrates unique regenerative capacities. For instance, in partial heptectomy, hepatocyte proliferation can fully regenerate the liver without participation of any stem cells. However, in pathologic conditions like liver cirrhosis, in which liver damage results in the fibrotic formation of scar tissue, the liver fails to regenerate [1]. In such a situation, organ transplantation has been the only treatment available to recover the loss of liver and liver function [1].

There are several significant problems in liver transplantation. First, there are few donors so that the supply cannot match the demand. Second, liver transplantation is a massively invasive surgery with many complications causing significant morbidity and mortality. Third, allograft can cause donor-receiver cross match problems [2].

To overcome these limitations, it has been suggested that transplantation of cellular components such as hepatocytes or hepatic stem cells has the potential to regenerate and cure end stage liver disease [2]. Research has demonstrated that in early development, hepatoblasts which can differentiate into two cell lineages (hepatocyte and cholangiocyte), emerge and function as stem cells [1].
Other studies have suggested that in adult liver, oval cells emerge after massive hepatic injury and proliferate into hepatocytes in the terminal developmental stage (in adult liver). However, it is unclear that this oval cell actually participates in liver repopulation [1].

Human stem cells have the potential to differentiate into many different lineages of specialized cells and function as a reservoir for the maintenance, repair and regeneration of organ tissue. Although adult hepatic stem cells are not clearly identified as yet and their existence is still controversial, recent studies suggest both that there is potential for stem cell differentiation to liver cells from various sources, and also direct reprogramming of either hepatic progenitors or adult hepatocytes to provide therapeutic regeneration of impaired liver. This review will discuss about the types of known stem cells giving rise to liver regeneration and its clinical application so far.

BASIC PROPERTIES OF STEM CELLS

Two stem cell types exist, embryonic stem cells (ESC) and adult stem cells. In the early developmental stage of mammals, the ultimate progenitor cell is the zygote and in early development, mitotic division of the zygote produces the trophoblast, with an inner cell mass consisting of pluripotent cells called embryonic stem cells. Embryonic stem cells undergo further proliferation and differentiation to generate multipotent stem cell lineages that are the source for all the progenitor cells which then replicate and differentiate into adult tissue cells that constitute the organs [3].

It has been demonstrated that many cells of the adult organism retain the ability of stem cells. These adult stem cells are different from other cells because they can self-renew the population of stem cells through proliferation while maintaining the ability to differentiate to multiple lineages of differentiated cells. A stem cell population existing in an adult organism gives rise to various cells of the organ tissues, continuously supplying specific terminally differentiated cells needed to maintain homeostasis of the body. Usually stem cells have four major characteristics: (1) self-renewal capacity, (2) multipotency, (3) long term tissue regeneration, and (4) serial transplantability [1]. To maintain their function continuously, adult stem cells are able to undergo asymmetric division, wherein one of the daughter cells remains a stem cell, unchanged, to serve as a reservoir for future proliferation and regeneration. The other daughter cell undergoes a transformation and differentiation to become a multipotent progenitor of a specific cell lineage [4]. These progenitor cells, daughters of the original stem cell, often maintain capacity for rapid proliferation, but have a restricted capacity for differentiation along a particular lineage, and so are described as multipotent instead of pluripotent. The significant differences are that they no longer demonstrate the capacity for continual self-renewal and serial transplantability, and generally participate in short term tissue regeneration [1]. In general, fully differentiated mammalian somatic cells are thought to be non-proliferative. One of the exceptions is the hepatocyte which proliferates to regenerate liver after heptectomy or severe hepatic injury.

REGENERATION CAPACITY OF LIVER

Liver is a crucial organ of the body, which performs numerous essential functions. It demonstrates a remarkable and unique regenerative ability, compared to other organs, in that it can restore its initial mass even after 2/3 heptectomy. Liver regeneration of mammals, including humans, occurs by increasing size of the remaining lobe due to proliferation of adult hepatocytes, a process of compensatory hyperplasia of the resected lobe [5]. Compensatory hyperplasia leading to liver regeneration, is unique to other organs, in that differentiated hepatocytes constitute the initial response to injury, and progenitor cells of the liver remain as a reservoir [5]. Normal hepatocytes are in a quiet status exhibiting very slow turnover rate (1-2 times/year) [1]. However, after acute massive damage, the liver regenerates very fast (in 7-10 days) in rodents [5]. In humans, a similar process occurs with a slower rate (-3 month) [1]. Although a physiologic model for liver regeneration has not been determined precisely, it is believed that there are two essential components: (1) physiologically, hepatocytes maintain a slow turnover for homeostatic replacement and (2) under normal conditions, liver parenchymal replacement is conducted almost exclusively by adult hepatocytes with a minor contribution of stem cells [6]. With experimentally induced damage, hepatocytes first proliferate within 1-2 days, followed by other hepatic cell groups such as Stellate cells and Kupffer cells [5]. The involvement of stem cells in natural liver homeostasis is believed to be very limited, but their role needs more precise identification [1].

CELL TYPES FOR LIVER REGENERATION

Liver parenchyma consists of polyploid epithelial cells called hepatocytes [5]. They originate from endodermal hepatoblasts that
can differentiate into two adult cell types; hepatocyte or cholangiocyte [6]. Hepatocytes have numerous functions, for example, the expression of cytochrome P450 for metabolic regulation, the production of albumin, the storage of glycogen, the creation of urea, and the conjugation of bilirubin [7]. More importantly, for our review, they can proliferate nearly indefinitely to restore liver damage under specific circumstances [8]. Consequently, the transplantation of hepatocytes has shown promising results in the repair of massive recurrent liver injury by having a greater potential for transplanted cells to proliferate than host hepatocytes [1]. Surprisingly, hepatocytes have also demonstrated the ability to differentiate into cholangiocytes, which are the biliary tract epithelial cells [9]. From these results, hepatocytes might be considered to fulfill the four criteria for stem cells. However, since in the normal conditions transplanted hepatocytes can not reproduce a normal liver, they do not correspond completely to the stem cell properties [10,11].

However, it is difficult to apply hepatocytes to cell transplantation therapy for two major reasons. The first is that they have not been able to completely restore the normal hepatic functions that have been lost in end stage liver disease. The second reason is that hepatocytes are unstable in short term culture and so are difficult to multiply in in vitro culture for transplantation in sufficient quantities to rapidly reconstitute liver function [12]. Many studies seeking to multiply adult hepatocytes are ongoing, including supplying a suitable extracellular matrix for cell attachment that allows hepatocytes maintain functionality while proliferating. Still, the regeneration of adult hepatocytes for transplantation in vitro has not been possible and is not promising at this time [2].

1. Oval cells as hepatic progenitor cells

There appear to be quiescent stem cells in the adult liver which replicate massively in response to prolonged liver injury [2], which are called oval cells. The term “oval cells” was coined because of their oval shape described by Farber [13]. They are also called hepatic adult stem cells or hepatic progenitor cells-precursor cells [6]. Originating from portal areas around the canals of Hering, they are induced to proliferate when hepatocyte regeneration is impaired as in chronic liver diseases. Oval cell activation is thought to proceed via four steps: (1) activation, (2) further amplification of oval cells, (3) migration of progenitor cells, and (4) differentiation to either hepatocytes or cholangiocytes [5]. Oval cells may have stem cell traits because they repopulate the liver after transplantation, but the low rate of repopulation limits their clinical application [1]. Also they are hard to isolate and purify and may generate tumors [14]. Still, research with oval cells suggests the possible existence of liver stem cells. The identification of self-renewing, stable populations of liver stem cells capable of liver regeneration and creating culture conditions for their generation in transplantable numbers are the task of future studies [1].

2. Fetal hepatocytes (hepatoblasts) as liver stem/progenitor cells

Hepatoblasts are the progenitor cells in the fetal liver [15]. In early gestational stage, proliferating endodermal stem cells start differentiating into hepatic epithelial lineages. These cells are now called hepatoblasts and are able to proliferate massively. Hepatoblasts can divide into two lineages, hepatocytes and cholangiocytes [1]. The difference between hepatoblasts and fetal hepatocytes is that hepatoblasts can reproduce massively in vitro and can become both hepatocyte and cholangiocytes in vivo. Hepatoblasts have shown promise in regenerating injured liver in animal transplantation studies [16]. However, there are ethical issues concerning availability.

Fetal hepatocytes can also replicate multiple times in vitro in contrast to adult hepatocytes [17]. In the study of Sandhu et al. [10] using fetal liver epithelial cells, transplanted liver epithelial cells engrafted to the host liver forming bile canaliculi after partial hepatectomy. And demonstrated three characteristics of stem cells: (1) massive proliferation, (2) bipotency, and (3) in vivo long term repopulation [10]. However, these cells have not demonstrated self-renewal or serial transplantability [18]. Functionally, fetal hepatocytes have low ability to eliminate ammonia (49%) and produce urea (1.1%) compared with adult hepatocytes [19]. Together with ethical problems, the possibility of tumor formation [20], and functional immaturity [21] limit the clinical application of these cells.

3. Bone marrow MSC-derived hepatic lineage cells

Comparing the 2 stem cell types referred above, adult stem cells have relative merits over embryonic stem cells in that they have low risk of forming teratoma and can avoid ethical problems. In many studies, mesenchymal stem cells from diverse sources are proved capable to trans-differentiate to hepatocyte-like cells [22]. It is reported that bone marrow MSC cells travelling through the circulatory system will differentiate into hepatocytes after arriving at the liver [1]. In particular, studies using hematopoietic stem cells pre-homed to the bone marrow showed the nearly 100% en-
graftment efficiency [23]. Many other studies have been done with human cord blood cells [24], adult progenitor cells [25], and mesenchymal stem cells [26] have consistently had problems with a low liver repopulation rate. Mesenchymal stem cells are known to have other roles in liver repair, improving hepatic fibrosis and helping to restore liver function [27]. However, mesenchymal stem cells propensity to trans-differentiate to myofibroblasts is a stubborn obstacle [28]. Liver regeneration studies in more normal, clinical situations are needed [1]. Fig. 1 shows the capacity to generate hepatocyte-like cells from human MSC.

4. Pluripotent stem cell-derived hepatic lineage cells

ESCs of the inner cell mass of the trophoblast are pluripotent, self-renewing primitive cells [29]. Their reproductive integrity has the potential to supply unlimited somatic cells for use in regenerative medicine [30]. Many studies in animal models demonstrate the successful transformation of hepatocyte-like cells from ESCs [31]. Transplanted into the liver, the differentiated hepatic lineage cells showed further differentiation into mature hepatocytes and cholangiocytes [32]. But like other stem cells, the repopulation rate of the transplanted cells is low. Further research is necessary [1]. Ethical controversies, immunological compatibility, and risks of teratoma formation currently preclude the use of ESC in cell therapy [33]. Also, a selection technique for isolatiog hepatic differen-

CLINICAL APPLICATION OF LIVER CELLS DERIVED FROM VARIOUS SOURCE

In congenital liver metabolic diseases and acute liver failure, hepatocyte transplantation has been investigated as treatment [40]. Allogenic hepatocytes can be directly induced to position in the liver and reposition the, though, again, low restoration rate and high cellular loss limit the therapy [41]. Successful studies using hepatocytes in transplantation increased the anticipation to apply them in clinical liver diseases [42]. Hepatocyte transplantation showed
successful outcome in some metabolic liver diseases [43], but there was only a limited expansion of the transplanted cells. Table 1 summarizes many cell types and their characteristics [2].

FUTURE CHALLENGE (3D PRINTING, DECELLULARIZED MATRIX)

Many researchers are interested in liver stem cells, because they may open the door to new curative management of acute or chronic liver diseases. Liver stem cells are believed to reside in the liver stroma, and can proliferate and differentiate giving arise to liver when hepatocytes proliferation is suppressed. Because of their ability to regenerate functional liver tissue, attempts to transplant the selected liver stem cells are regarded as a hopeful method for future treatment. The clinical outcome of many trials are now being evaluated. Until now, one limitation has been insufficient liver regeneration rate from transplanted cells in vivo. Also, in vitro attempts to multiply hepatocytes grown in culture, have resulted in the degeneration of hepatic function and loss of hepatocytic characteristics. These are persisting problems to be solved whether the transplanted cells are primary isolated or differentiated from other stem cells [2].

As an effort to improve the latter problem of in vitro generation, creating better culture conditions that are more similar to the human liver is currently being investigated. Regulating factors such as the interactions of cell-cell communication or signals from the extracellular-matrix, are being incorporated as components of the culturing media [44,45]. Constructing a model in which hepatocytes can preserve their functional structural hepatocyte properties would be an amazing development in liver regeneration studies [2]. With the development of 3-dimensional printing technology, in vitro culture of hepatocytes in a 3-D tissue culture matrix
mimicking the normal liver may allow a more realistic culture environment [46]. Also studies using decellularized tissue matrix from liver that keeps intact the microvascular and matrix formations, may furnish the necessary signals to maintain hepatocyte function during in vitro multiplication. Continued advances in these kinds of studies provides hope proceeding toward successful liver transplantation [47].

CONCLUSION AND PERSPECTIVE

The main concerns in liver regeneration are finding appropriate cell lines for transplantation. Of the four major properties of stem cells, liver repopulation rate and functional maturity of derived hepatocyte are the focus of continuing efforts [2]. There have been numerous studies to identify stem cells in adult liver including research of adult hepatocytes, oval cells, and mesenchymal stem cells. Efforts to differentiate hepatocytes from pluripotent stem cells have also been made. Embryonic stem cells and induced pluripotent stem cells are the target of these trials. Many studies show promising outcomes and possibility, but still we have a long way to go. Establishing a protocol to differentiate functionally grown hepatocytes in sufficient numbers for regenerating liver function is a key future task, and to do so, better understanding of cellular signal transduction, cell to cell interactions, and cell to matrix interactions are needed [48]. Further research about liver stem cells has direct application to other purposes, such as investigations of normal hepatocyte physiology, models of disease pathology, drug screening and efficacy testing, and so on, providing ample reason to continue our research.

ACKNOWLEDGMENTS

This study was supported by the project titled “Multidisciplinary assessment in radiation injury and application of regenerative medicine (50586-2014)” by the Ministry of Science, ICT and Future Planning (MSIP), Korean Government.

REFERENCES

Table 1. Cell types studied in liver regeneration and their characteristics

<table>
<thead>
<tr>
<th>Cell</th>
<th>Origin</th>
<th>Properties</th>
<th>Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regenerating hepatocyte</td>
<td>Adult liver</td>
<td>High host compatibility</td>
<td>Poor proliferation in vitro culture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low availability</td>
</tr>
<tr>
<td>Oval cells</td>
<td>Portal areas of adult liver</td>
<td>Bipotency</td>
<td>Hard to isolate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low availability</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Possible tumor formation</td>
</tr>
<tr>
<td>Hepatoblast</td>
<td>Early gestational stage fetal</td>
<td>Massive proliferation in vitro culture</td>
<td>Ethical concerns</td>
</tr>
<tr>
<td></td>
<td>liver</td>
<td>Bipotency in vivo</td>
<td>Low availability</td>
</tr>
<tr>
<td>Fetal hepatocyte</td>
<td>Fetal liver</td>
<td>Easy to isolate</td>
<td>Functional immaturity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multiple proliferation in vitro culture</td>
<td>Low availability</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ethical concerns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Possible tumor formation</td>
</tr>
<tr>
<td>Mesenchymal stem cells</td>
<td>Adult tissue (e.g. bone marrow</td>
<td>High availability</td>
<td>Transdifferentiation to myofibroblasts</td>
</tr>
<tr>
<td></td>
<td>etc.)</td>
<td>No tumor formation</td>
<td>Low hepatic differentiation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No ethical concerns</td>
<td></td>
</tr>
<tr>
<td>Embryonic stem cells</td>
<td>Embryo</td>
<td>High availability</td>
<td>Ethical concerns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multiple proliferation in vitro culture</td>
<td>Possible tumor formation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High hepatic differentiation</td>
<td></td>
</tr>
<tr>
<td>Induced pluripotent stem</td>
<td>Somatic cells (e.g. fibroblast</td>
<td>No ethical concerns</td>
<td></td>
</tr>
<tr>
<td>cells</td>
<td>etc.)</td>
<td>High availability</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multiple proliferation in vitro culture</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>High hepatic differentiation</td>
<td></td>
</tr>
</tbody>
</table>

44. Matsumura T, Kauffman FC, Meren H, Thurman RG. O2 uptake in peri-
portal and pericentral regions of liver lobule in perfused liver. Am J
Physiol 1986;250:G800-5.
45. Malik R, Selden C, Hodgson H. The role of non-parenchymal cells in liv-
46. Shan J, Stevens KR, Trehan K, Underhill GH, Chen AA, Bhatia SN. He-
patic tissue engineering. In Monga SPS, ed. Molecular Pathology of Liver
47. Uygun BE, Soto-Gutierrez A, Yagi H, Izamis M-L, Guzzardi MA, Shul-
man C, et al. Organ reengineering through development of a transplant-
able recellularized liver graft using decellularized liver matrix. Nature med-
48. Hay DC, Pernagallo S, Diaz-Mochon JJ, Medine CN, Greenhough S, Han-
noun Z, et al. Unbiased screening of polymer libraries to define novel sub-
strates for functional hepatocytes with inducible drug metabolism. Stem