Short Communication

Calcium metabolism in cows receiving an intramuscular injection of 1,25-dihydroxyvitamin D₃ combined with prostaglandin F₂α closely before parturition

Norio Yamagishi¹*, Yu Ayukawa², Inhyung Lee³, Kenji Oboshi¹, Yoshihisa Naito⁴

¹ Research Center for Animal Hygiene and Food Safety, and ² Department of Veterinary Clinical Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
³ Department of Neuroscience and Cell Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1069, USA
⁴ Department of Veterinary Clinical Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan

To determine the effect of exogenous 1,25-dihydroxyvitamin D₃ [1,25(OH)₂D₃] combined with induced parturition on calcium (Ca) metabolism, cows received a single intramuscular injection of 1,25(OH)₂D₃ and prostaglandin F₂α (PGF₂α) closely before calving. Ten late-pregnant, multiparous Holstein cows were assigned to 1,25(OH)₂D₃ group (five treated with both 1,25(OH)₂D₃ and PGF₂α) and control group (five treated with PGF₂α). 1,25(OH)₂D₃ group showed an increase in plasma Ca concentration around parturition, whereas control group revealed a decrease in plasma Ca level. Plasma Ca concentration in 1,25(OH)₂D₃ group were significantly higher than that in control group during ~0.5 to 3 days after injection.

Key words: cow, calcium, 1,25-dihydroxyvitamin D₃, hypocalcemia, parturition

1,25-dihydroxyvitamin D₃ [1,25(OH)₂D₃], a physiologically active form of vitamin D₃ metabolites, has been used to elevate plasma calcium (Ca) concentration during 1 to 4 days post-injection and thereby prevent parturient paresis (parturient hypocalcemia) in dairy cows [2,4,5]. This metabolite has the advantage of a shorter biological life than vitamin D₃; therefore, toxicity problems are reduced [9]. The shorter biological life also requires a more accurate prediction of the time of parturition for full effectiveness [4]. Because a decrease in the plasma Ca level is most likely to occur within 1 or 2 days postpartum [11], we suggest that exogenous 1,25(OH)₂D₃ should be administered to cows during 1 to 3 days prepartum. Parturition can be induced to dairy cows using prostaglandin F₂α (PGF₂α) within 2 or 3 days after injection [6]. In this short communication, cows received a single intramuscular injection of 1,25(OH)₂D₃ and PGF₂α closely before calving. The objective of this study was to determine the effects of exogenous 1,25(OH)₂D₃ combined with PGF₂α on Ca metabolism around parturition and to discuss the ability of this prophylactic regimen to prevent parturient paresis in cows.

The protocol and experimental design were approved by the Obihiro University of Agriculture and Veterinary Medicine, Laboratory Animal Care and Use Committee. Ten late-pregnant, multiparous Holstein cows (aged 3 to 4 years) were assigned to 1,25(OH)₂D₃ group (five treated with both 1,25(OH)₂D₃ and PGF₂α) and control group (five cows treated with PGF₂α). The cows stayed in an outside paddock during dry period until 275 days gestation, and were housed in an individual pen until 5 days postpartum. The cows were fed a ration of good quality hay, grass and corn silages, and commercial concentrate; providing daily 0.3% Ca and 0.2% phosphorus (P) of dry matter (DM) prepartum and 0.8% Ca and 0.4% P of DM postpartum.

Intramuscular injection of 1,25(OH)₂D₃ and/or PGF₂α was performed as close to 1 or 2 days before the predicted date of parturition. Date of parturition was predicted twice a day by rectal temperature, by observation of udder filling and oedema, and by swelling and relaxation of the vulva and pelvic ligaments [1]. The cows of 1,25(OH)₂D₃ group treated with a 1 µg/kg body weight 1,25(OH)₂D₃ dissolved in ethanol and 25 mg PGF₂α (Dinoprost; Pharmacia & Upjohn, Japan). The 1,25(OH)₂D₃ use in this study was the gift of Mercian Corporation, Japan. The cows of control group treated with 25 mg PGF₂α and ethanol.

Heparinized blood samples were obtained from the jugular vein from 277 days gestation to 5 days postpartum; the samples were immediately chilled in ice water and then centrifuged at 4°C. The obtained plasma was frozen at −30°C. The plasma 1,25(OH)₂D₃ concentrations were determined.

*Corresponding author
Tel: +81-155-49-5377; Fax: +81-155-49-5377
E-mail: nori_yamagishi@hotmail.co.jp
using a 1,25(OH)\textsubscript{2}D RIA kit (Immunodiagnostic Systems, UK). The levels of Ca, inorganic phosphorus (iP), and magnesium (Mg) were analysed using a TBA-30R automatic analyser (Toshiba Medical Systems, Japan).

The actual time (mean ± SD) of parturition after the intramuscular injection was 29.4 ± 8.9 hours in 1,25(OH)\textsubscript{2}D\textsubscript{3} group and 27.6 ± 11.7 hours in control group. There were not any specific clinical signs seen in cows of 1,25(OH)\textsubscript{2}D\textsubscript{3} group by using exogenous 1,25(OH)\textsubscript{2}D, compared to those of control group. Only one cow of control group developed retained fetal membrane. Parturient paresis occurred in one cow of control group within 10 hours of parturition and in another of 1,25(OH)\textsubscript{2}D\textsubscript{3} group at 4 days postpartum. These two cows received Ca treatment (an intravenous infusion of 500 ml of 25% Ca borogluconate solution) [10,12] by the referring veterinarian, and recovered immediately. The criteria to start this treatment were that the cow was in recumbency and was unable to stand up itself.

Wilcoxon rank-sum test was used to observe the difference at the timed value between the groups: \(*p<0.05; **p<0.01 \).

Table 1 shows plasma 1,25(OH)\textsubscript{2}D\textsubscript{3}, Ca, iP and Mg concentrations around parturition in cows of 1,25(OH)\textsubscript{2}D\textsubscript{3} and control groups. Plasma 1,25(OH)\textsubscript{2}D\textsubscript{3} concentrations in 1,25(OH)\textsubscript{2}D\textsubscript{3} group (391.4 ± 188.9 to 1185.0 ± 384.1 pg/ml) were significantly higher during –1 to 0.5 days after parturition than those in control group (52.9 ± 14.3 to 75.4 ± 23.8 pg/ml; \(p<0.05 \) or \(p<0.01 \)). The levels of 1,25(OH)\textsubscript{2}D\textsubscript{3} at 5 days postpartum in 1,25(OH)\textsubscript{2}D\textsubscript{3} group (20.2 ± 12.5 pg/ml) were significantly lower compared with the level in control group (57.4 ± 16.2 pg/ml; \(p<0.05 \)). 1,25(OH)\textsubscript{2}D\textsubscript{3} group showed a marked increase in plasma Ca and iP concentrations around parturition, whereas control group seemed to reveal a mild decrease in plasma Ca and iP and a small rise in Mg level around calving. Plasma concentrations of Ca (10.3 ± 0.7 to 11.5 ± 1.0 mg/dl) and iP (6.0 ± 1.9 to 7.9 ± 2.1 mg/dl) in 1,25(OH)\textsubscript{2}D\textsubscript{3} group were significantly higher than those in control during –0.5 to 3 days (8.3 ± 1.0 to 9.4 to 0.6 mg/dl; \(p<0.05 \) or \(p<0.01 \)) and during –0.5 to 0.5 days (2.5 ± 1.5 to 4.1 ± 0.8 mg/dl; \(p<0.05 \) after parturition, respectively. There was no significant difference in plasma Mg concentration between two groups.

The increase in plasma Ca and iP concentrations following the 1,25(OH)\textsubscript{2}D\textsubscript{3} injection described here was similar to that observed by some previous investigations [2,4,5]. It has been shown that exogenous supplied 1,25(OH)\textsubscript{2}D\textsubscript{3} does not stimulate increased bone resorption and that hypercalcemia and hyperphosphatemia result from an increased rate of intestinal absorption [4,8,9].

Goff and Horst [3] indicated that the main problem to impede the widespread use of exogenous 1,25(OH)\textsubscript{2}D\textsubscript{3} or its analogues for the prevention of parturient paresis was the difficulty in timing the treatment. In the present study, we suggested that the prophylactic regimen using the intramuscular injection of 1,25(OH)\textsubscript{2}D\textsubscript{3} combined with the induced parturition was successful to prevent hypocalcemia closely near calving. However, some disadvantages in 1,25(OH)\textsubscript{2}D\textsubscript{3} group, i.e., the significant low plasma 1,25(OH)\textsubscript{2}D\textsubscript{3} as described by Hoffsis et al. [5] will be necessary to make the present prophylactic regimen complete.

Table 1. Plasma 1,25(OH)\textsubscript{2}D\textsubscript{3}, Ca, inorganic phosphorus (iP) and Mg concentrations around parturition in 1,25(OH)\textsubscript{2}D\textsubscript{3} and control groups (mean ± SD)

<table>
<thead>
<tr>
<th>Items</th>
<th>Groups</th>
<th>Prepartum</th>
<th>-1</th>
<th>-0.5</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,25(OH)\textsubscript{2}D\textsubscript{3} (pg/ml)</td>
<td>Control</td>
<td>36.8±9.8</td>
<td>53.6±22.1</td>
<td>52.9±14.3</td>
<td>73.3±35.3</td>
<td>75.4±23.8</td>
<td>96.6±25.9</td>
<td>95.8±31.7</td>
<td>95.4±23.0</td>
<td>57.4±16.2</td>
</tr>
<tr>
<td></td>
<td>1,25(OH)\textsubscript{2}D\textsubscript{3} group</td>
<td>28.7±13.4</td>
<td>1185.0±384.1*</td>
<td>694.5±526.7**</td>
<td>596.6±338.4**</td>
<td>391.4±188.9*</td>
<td>51.9±59.1</td>
<td>65.2±17.5</td>
<td>45.9±11.6</td>
<td>20.2±12.5*</td>
</tr>
<tr>
<td>Ca (mg/dl)</td>
<td>Control</td>
<td>9.7±0.3</td>
<td>9.4±1.0</td>
<td>9.4±0.6</td>
<td>8.3±1.2</td>
<td>8.6±0.9</td>
<td>8.3±1.0</td>
<td>8.5±0.8</td>
<td>9.1±0.6</td>
<td>10.0±1.1</td>
</tr>
<tr>
<td></td>
<td>1,25(OH)\textsubscript{2}D\textsubscript{3} group</td>
<td>9.8±0.6</td>
<td>10.7±0.8</td>
<td>11.0±0.9*</td>
<td>10.8±1.0*</td>
<td>11.5±1.0*</td>
<td>11.1±1.1**</td>
<td>11.1±0.9*</td>
<td>10.3±0.7*</td>
<td>9.6±0.5</td>
</tr>
<tr>
<td>iP (mg/dl)</td>
<td>Control</td>
<td>5.0±0.5</td>
<td>5.3±2.0</td>
<td>3.5±1.4</td>
<td>2.5±1.5</td>
<td>4.1±0.8</td>
<td>4.9±1.0</td>
<td>4.3±1.3</td>
<td>4.7±1.6</td>
<td>3.6±1.0</td>
</tr>
<tr>
<td></td>
<td>1,25(OH)\textsubscript{2}D\textsubscript{3} group</td>
<td>4.5±0.9</td>
<td>5.8±1.2</td>
<td>6.3±1.5*</td>
<td>6.0±1.9*</td>
<td>7.9±2.1*</td>
<td>7.8±2.6</td>
<td>8.1±2.3</td>
<td>6.8±2.3</td>
<td>4.3±0.3</td>
</tr>
<tr>
<td>Mg (mg/dl)</td>
<td>Control</td>
<td>2.3±0.2</td>
<td>1.9±0.9</td>
<td>2.4±0.3</td>
<td>2.6±0.5</td>
<td>2.7±0.2</td>
<td>2.7±0.3</td>
<td>2.5±0.3</td>
<td>2.3±0.4</td>
<td>2.3±0.7</td>
</tr>
<tr>
<td></td>
<td>1,25(OH)\textsubscript{2}D\textsubscript{3} group</td>
<td>2.4±0.2</td>
<td>2.4±0.6</td>
<td>2.3±0.4</td>
<td>2.3±0.3</td>
<td>2.3±0.2</td>
<td>2.3±0.3</td>
<td>2.5±0.2</td>
<td>2.3±0.3</td>
<td>2.4±0.5</td>
</tr>
</tbody>
</table>

Prepartum: 277 days gestation. Significant difference at the timed value between the groups: \(*p<0.05; **p<0.01 \).
Acknowledgments

We thank Dr. Azuma Watanabe (Mercian Corporation, Japan) for supplying the 1,25(OH)₂D₃. This study was supported in part by a Grant-in-Aid for Scientific Research (Shourei-A No. 13760218) from Japan Society for the Promotion of Science and a grant from The 21st Century COE Program (A-1), Ministry of Education, Culture, Sports, Science, and Technology of Japan.

References