Intestinal and Multivisceral Transplantation

Jang II Moon and Andreas G. Tzakis

Division of Liver and GI Transplant, Department of Surgery, University of Miami School of Medicine, Miami, FL, USA.

Intestinal transplantation has been established as a treatment option for patients that suffer from intestinal failure with complications from total parenteral nutrition. It is still rapidly evolving and just reached a landmark of 1,000 cases worldwide. Intestinal allografts can be transplanted as isolated, combined with the liver or as a part of a multivisceral allograft. Tacrolimus-based immunosuppression regimens have been used universally with improved outcomes. Clinical outcome in intestinal transplantation has improved significantly over time, impacted by refinement of surgical technique and novel immunosuppression. However rejection, infection, and technical complications still remain the most difficult barrier to improve patient and graft survival.

Key Words: Intestinal transplantation, multivisceral transplantation

INTRODUCTION

Total parenteral nutrition (TPN) has significantly prolonged survival and has been established as a main treatment option for the patients with intestinal failure.1 However, TPN related complications such as central venous catheter infection leading to intractable sepsis, venous thrombosis causing loss of venous access, and cholestatic liver resulting in cirrhosis are not uncommon.2 Intestinal transplantation is indicated in this group of patients to prolong life span and improve quality of life.3,4 Intestinal allografts are generally classified into three types: isolated intestinal graft, combined liver and intestinal graft, and multivisceral graft (Fig. 1). Each type of graft can be modified by the patient’s need and clinical situation. This article reviewed general principles of intestinal and multivisceral transplantation, which includes indication, surgical techniques, posttransplant management, and outcome.

INDICATIONS

Thus far, intestinal or multivisceral transplantation is only indicated when patients with intestinal failure develop TPN related complications, which results in life-threatening conditions. Intestinal failure, defined as inability of the intestine to maintain nutrition and/or positive fluid and electrolyte balance without parenteral support, develops secondary to either loss of absorptive surface or dysfunction of the native small intestine.8-10 Congenital anomalies and ischemic injury to the intestine are major causes of the intestinal failure in children. In adults, extensive bowel resection resulting from various diseases such as Crohn’s disease, mesenteric vascular thrombosis, abdominal trauma, or desmoid tumor is the most common cause of intestinal failure. Congenital mucosal disorders and Intestinal motility disorders also contribute to intestinal failure.11,12 Table 1 summarizes the common causes of intestinal failure, leading to intestinal or multivisceral transplantation.13-18

Intestinal failure patients can maintain reasonable quality of life with TPN if the treatment is not complicated. Isolated intestinal transplantation could be indicated before liver failure occurs. If intestinal failure patients develop end stage liver disease, liver transplant is necessary in combination with the intestinal allograft. Sometimes the
pancreas is included in this composite graft to avoid difficult biliary anastomosis and/or graft portal vein complications. If the patients have severe adhesions or fistulas in the upper abdomen, the stomach and pancreas need to be removed. In this case, multivisceral transplantation including a liver and stomach/pancreas complex with the intestinal graft is indicated. This multivisceral transplantation can be modified without the liver allograft if there is no evidence of liver disease. Kidney(s) can also be included in a multivisceral graft depending on renal function.

Table 1. Common Causes of Intestinal Failure in Recipients of Intestinal or Multivisceral Transplantation

<table>
<thead>
<tr>
<th>Children</th>
<th>Adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midgut volvulus (malrotation)</td>
<td>Mesenteric thrombosis</td>
</tr>
<tr>
<td>Gastrochisis</td>
<td>Crohn’s disease</td>
</tr>
<tr>
<td>Necrotizing enterocolitis</td>
<td>Intra-abdominal desmoid tumor</td>
</tr>
<tr>
<td>Intestinal atresia</td>
<td>Intestinal trauma</td>
</tr>
<tr>
<td>Chronic intestinal pseudo-obstruction</td>
<td>Pseudo-obstruction</td>
</tr>
<tr>
<td>Microvillus inclusion disease</td>
<td>Midgut volvulus</td>
</tr>
<tr>
<td>Intestinal polyposis</td>
<td></td>
</tr>
<tr>
<td>Hirschsprung’s disease</td>
<td></td>
</tr>
</tbody>
</table>

TRANSPLANT SURGERY

Eviscerectomy

It is important to remove diseased organ and create proper space for the allograft. Most of intestinal failure patients have severe intra-abdominal adhesion due to extensive history of abdominal surgeries. Significant bleeding is expected during dissection before the surgeon obtains proper surgical field and removes the diseased organ. Clamping of the root of the celiac and superior mesenteric arteries can minimize bleeding when multivisceral transplantation is planned. Intra-luminal embolization of those
arteries immediate before transplant surgery would be an alternative option to reduce bleeding. Hepatectomy using a “piggyback” method can be performed without vено-venous bypass.

Vascular anastomosis. If the allograft contains the liver, there is no need for the graft portal reconstruction. This type of allograft only requires suprahepatic cava anastomosis into the recipient’s vena cava (hepatic piggyback anastomosis). In the isolated intestinal allograft, the donor portal or superior mesenteric vein is anastomosed to the side of the recipient’s main portal vein at the hepatic hilum (intestinal piggyback anastomosis) or to the distal end of the superior mesenteric vein. In addition to this portal drainage, the donor vein can be drained into the recipient’s cava (systemic drainage) without significant metabolic consequences. The arterial anastomosis is commonly performed with an arterial conduit into the suprascalciac or infrarenal aorta of the recipient.

Gastrointestinal tract reconstruction

There are wide variations in reconstruction of the gastrointestinal tract. Depends on graft type, the proximal anastomosis is either a jejunojejunostomy or esophagogastrostomy. A defunctionalized limb of the donor jejunum can be used for biliary reconstruction and/or tube jejunostomy if necessary. A pyloroplasty should be performed in the transplanted stomach. The distal anastomosis of the gastrointestinal tract can be flexibly adjusted to the recipient’s condition. An end ileostomy with a side-to-end ileocolostomy (Bishop-Koop type), a double barrel ileostomy-colecystomy (Mikulicz type), or a loop ileostomy are common types (Fig. 2, Table 2).

Abdominal wall closure

Patients with short gut syndrome often present with contracted small abdominal cavity, which leads to difficult abdominal wall closure. There are few alternatives to achieve this goal: reduction of the size of the graft using partial resection of the liver or intestine; closure with mesh and staged approximation, using abdominal wall stretcher (presented at 4th Annual Winter Symposium of ASTS, Scottsdale, AZ, Jan, 2004), or abdominal wall transplantation.

Fig. 2. Surgical options for the creation of end ostomy. (A) Bishop-Koop type, (B) Mikulicz type, (C) Loop ileostomy.

POSTTRANSPLANT MANAGEMENT

Immunosuppression

At the current time, most centers use tacrolimus based immunosuppression in intestinal and multivisceral transplant patients. The initial doses are 0.02–0.03 mg/kg/day or 0.05–0.10 mg/kg/day for the intravenous or enteral preparation respectively. Target 12-hour trough whole-blood level is 15–20 ng/ml. There is no significant difference in the absorption of tacrolimus in a well-functioning
Table 2. Summaries of Various Anastomoses Based on Type of the Grafts

<table>
<thead>
<tr>
<th></th>
<th>Isolated intestine</th>
<th>Liver and intestine</th>
<th>Multivisceral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venous outflow</td>
<td>PV (into IVC or PV)</td>
<td>Suprahepatic IVC (hepatic piggyback anastomosis)</td>
<td>CA & SMA</td>
</tr>
<tr>
<td>Arterial inflow</td>
<td>SMA</td>
<td>R-Y hepatico-jejunostomy</td>
<td>No need (no need if graft includes pancreas)</td>
</tr>
<tr>
<td>Biliary reconstruction</td>
<td>No need</td>
<td>Jejunoojejunostomy</td>
<td></td>
</tr>
<tr>
<td>Proximal GI tract</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distal GI tract</td>
<td></td>
<td></td>
<td>Ileocolostomy with various type of stoma (Bishop-Koop, Mikulicz, or Loop)</td>
</tr>
</tbody>
</table>

PV, portal vein; IVC, inferior vena cava; SMA, superior mesenteric artery; CA, celiac axis; R-Y, Roux-en-Y; GI, gastrointestinal.

intestinal graft or native intestine. Typically, a bolus of intravenous methylprednisolone is given after revascularization of the graft. Total dose of steroids are tapered over a period time. Supplemen- tary immunosuppression with azathioprine, cyclophosphamide, or mycophenolate mofetil has been used. There are various protocols of induction immunosuppression using antilymphocyte regimens or IL-2 blocking agents. Most recently tacrolimus without steroid combined with alemtuzumab induction showed good graft survival with decreased rejection episode. More detailed strategies for the use of immunosuppressive agents are described elsewhere.

Acute rejection and graft monitoring

Acute rejection is the most common and serious complication in clinical intestinal transplantation. Endoscopy with transplant intestine biopsy is essential to diagnose rejection. Protocol endoscopy with biopsy is strongly recommended even when graft function seems normal. If the patients develop clinical symptom of rejection such as fever or significant changes in ostomy output, including increasing volume, gross blood, or mucosal sloughing, endoscopy should be performed immediately. Endoscopic findings which include erythema, granularity, friable and hemorrhagic mucosa are highly suggestive of acute rejection. Recent technology, zoom endoscopy, allows magnifying endoscopic image up to 100 fold and actual villi and crypt can be observed in situ. There are preliminary studies which suggest serum citrulline levels may act as a marker for acute cellular rejection in small intestinal transplant recipients.

Nutrition

The ultimate goal of intestinal and/or multivisceral transplantation is to establish autonomy of the intestine and stop TPN. The enteral feeds are started as soon as intestinal function resumes and anastomotic integrity is established. The TPN continues until the patient satisfies nutritional needs with adequate oral and/or enteral feeds. The general guidelines for nutritional requirement is 1.5 gm protein/kg/day and 30-35 kcal/kg/day for adults. In children total calorie requirement is up to 100 kcal/kg/day.40 Graft function is assessed clinically by monitoring the volume of ostomy output and the concentration of reducing substances in the ostomy fluid. The ostomy output is usually high in the early post-operative days and decreases over time as the graft function normalizes. Additional assessment of absorption can be performed with Dxylose absorption studies and serum concentration of plasma proteins, albumin, prealbumin, vitamins, minerals, and trace elements. The central line is taken out as soon as possible to avoid infection.

OUTCOMES AND PROSPECTS

Most recent International Intestinal Transplant Registry (ITR) was presented at VIII International small bowel transplant symposium in September 2003. There were 61 centers from 19 countries reporting. One year graft and patient survival for the recipients of transplants after 2001 were
ranged 60-70% and 60-80% depending on the types of graft. Data from individual centers, which performed more than 100 intestinal and/or multivisceral transplantations, showed better survival than ITR data.62,65 One year graft and patient survival reached up to 80% and 70% respectively. Intestinal or multivisceral transplantation is not being performed on regular base yet in most of the centers. Only 28 centers in ITR had performed one or more transplants within the past 2 years. Because of this scarcity, intestinal and multivisceral transplantation has not reached the levels of success yet seen with kidney or liver transplants. Diagnosis and treatment of acute rejection still plays a major role in determining clinical outcome.

In conclusion, intestinal and multivisceral transplantation has become a lifesaving procedure for the patients with intestinal failure who developed life threatening complication of TPN.66,67 Since the survival rate has cumulatively improved during the past decade, intestinal and multivisceral transplantation have the potential to become the standard of care for the patients with intestinal failure.48,49

ACKNOWLEDGEMENT

The authors gratefully express their appreciation to Debbie Weppler, R.N. for her ongoing help with the preparation of this manuscript.

REFERENCES

