Simple Retrograde Balloon Dilation for Treatment of Ureteral Strictures: Etiology-based Analysis

Seek-Soo Byun¹, Jeong Hyun Kim², Seung-June Oh¹, and Hyeon Hoe Kim¹

¹Department of Urology, Seoul National University College of Medicine, Seoul, Korea; ²Department of Urology, Kangwon University College of Medicine, Chuncheon, Korea.

This study consists of an analysis of the results of simple retrograde balloon dilation in the treatment of ureteral strictures for the evaluation of the long-term efficacy of this procedure, and the factors affecting its success rate.

A prospective study was performed on 43 ureteral strictures (22 malignant, 21 benign) from 37 patients treated with retrograde balloon dilation from October 1997 to May 1999. After the stricture segments were dilated, ureteral stents were indwelled uniformly for 3 weeks. Strictures were postoperatively followed up radiographically at 1, 3, 6 and 12 months, and annually thereafter. Success was defined by symptomatic and radiographic improvement. The follow-up periods ranged from 8 to 57 months (mean 41 months).

The success rates of the benign strictures at 12 and 36 months were much higher than those of the malignant strictures (67 and 57% vs. 18 and 14%, p=0.0009). While 56% and 47% of the patients with strictures shorter than 2cm were successful at 12 and 36 months, respectively, none with strictures longer than 2cm were successful at the same follow-up periods (p=0.0002). Of the successful benign cases with a shorter segment at 12 months, 12 out of 14 (86%) showed persistent long-term successes at the 36 months follow-up. Other prognostic factors, such as sex, age, location, disappearance of a waist, dilation time and grade of hydronephrosis, were not found to influence the success rate. A multivariate analysis revealed the etiology and stricture length were the only significant prognostic factors affecting the final outcome (p=0.030 and p=0.0262, respectively, by Cox’s proportional hazards model).

In consideration of its minimal invasiveness and acceptable long-term outcome, simple retrograde balloon dilation is an effective treatment modality for benign ureteral stricture with a short segment (≤2 cm), and a shorter duration of stenting (3-weeks) is viable.

Key Words: Ureteral obstruction, balloon dilation, survival analysis

INTRODUCTION

Ureteral strictures may result from various etiologies including ureteral injury after endoscopic urological procedures, stone passage, radiation therapy, and open or laparoscopic surgery. While a variety of open surgical techniques, including renal mobilization, psoas hitch, Boari flap, ureteroneocystostomy, urinary diversion, transureteroureterostomy, intestinal interposition, renal autotransplantation and nephrectomy, can be used to treat patients with ureteral strictures, they all require major abdominal surgery, with its attendant morbidity, need for hospitalization and prolonged recovery. However, improved instrumentation and advances in endourological techniques, have provided a less invasive means of treating ureteral stricture disease with lower morbidity and cost.

Recent endourological procedures for the treatment of ureteral strictures include balloon dilation, endoureterotomy, Acucise endoureterotomy, metallic stents and Holmium laser endoureterotomy. Balloon dilation is one of the least invasive methods for the treatment of ureteral strictures and can be performed in either the antegrade or retrograde approach. Previous studies on balloon dilation have reported a variety of success rates (20-85%) for the treatment of ureteral strictures with various etiologies. However, there have...
been few studies investigating prospectively the management of ureteral strictures using only the retrograde approach as this approach is less invasive than the antegrade approach because a percutaneous nephrostomy is avoided. The objective of this study is to analyze the long-term results of simple retrograde balloon dilation for ureteral strictures with various etiologies and to investigate the prognostic factors affecting the final outcome of this procedure.

MATERIALS AND METHODS

A prospective study was performed on 43 ureteral strictures from 37 patients who had undergone retrograde balloon dilation from Oct 1997 to May 1999 at Seoul National University Hospital. The mean age of the 10 male and 27 female patients was 46.8 years, ranging from 4 to 82 years old. The etiologies of the ureteral strictures were classified as benign and malignant, in 21 and 22 cases, respectively, and are detailed in Table 1.

Balloon dilations, all utilizing the retrograde approach, were performed under local (20), spinal (11) or general (12) anesthesia by the same surgeon (HH Kim). Twelve Fr. (for 3 pediatric patients) to 24 Fr. Uromax II5 (Boston Scientific, Natick, MA, USA) balloons were used to dilate the ureteral strictures for either 5 or 10 minutes, under 2 to 18 Atm. of pressure. Seven Fr. ureteral stents were postoperatively indwelled for 3 weeks postoperatively. The follow-up periods ranged from 8 to 57 months, with a mean of 41 months. Clinical evaluation and follow-up studies, including excretory urography, were performed at 1, 3, 6, and 12 months postoperatively, and annually thereafter. Ultrasonography was performed if a patient was not appropriate for excretory urography.

Success was judged by both symptomatic and radiographic improvement, the former defined as the improvement of pre-dilation symptoms (flank or abdominal pain) attributable to the obstruction, and the latter as the improvement in the grade of hydronephrosis. The hydronephrosis was classified according to the system suggested by Williams and Kenawi. In brief, grade I was characterized by slight blunting of the calycetal fornices, and grade II as obvious blunting of the fornices. Rounding of the calyces with obliteration of the papillae characterized grade III, whereas extreme calycetal ballooning defined grade IV. Severe nonfunctioning hydronephrosis described grade V. Prognostic factors, such as sex, age, etiology, length, location, disappearance of a waist, dilation time and hydronephrotic grade, were evaluated for their effect on the final outcome of the ureteral stricture management. A log rank test and Cox's proportional hazards model were used for a statistical analysis, with $p<0.05$ considered statistically significant.

RESULTS

The overall success rates at 12, 24 and 36

![Table 1. Etiologies of Ureteral Strictures](image)

<table>
<thead>
<tr>
<th>Etiology</th>
<th>No. of Strictures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benign (21 ureters)</td>
<td></td>
</tr>
<tr>
<td>UPJ obstruction</td>
<td>6</td>
</tr>
<tr>
<td>UVJ obstruction</td>
<td>1</td>
</tr>
<tr>
<td>Stone-related</td>
<td>6</td>
</tr>
<tr>
<td>Idiopathic</td>
<td>6</td>
</tr>
<tr>
<td>Surgery</td>
<td>2</td>
</tr>
<tr>
<td>Malignant (22 ureters)*</td>
<td></td>
</tr>
<tr>
<td>Cervical cancer</td>
<td>17</td>
</tr>
<tr>
<td>Ovarian cancer</td>
<td>1</td>
</tr>
<tr>
<td>Rectal cancer</td>
<td>3</td>
</tr>
<tr>
<td>Bladder cancer</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>43</td>
</tr>
</tbody>
</table>

*Managed by surgery (6), radiotherapy (2), and combined (14).
months after dilation were 42, 37 and 35%, respectively. The success rates differed significantly between the benign and malignant strictures; being 67, 57 and 57% for the benign strictures, but only 18, 18 and 14% for the malignant strictures, at 12, 24 and 36 months, respectively ($p=0.0009$ by log rank test) (Table 2). The length of the stricture influenced the success rate; as 56, 50 and 47% of the patients with strictures shorter than 2 cm were successful, while none with strictures longer than 2 cm were successful at 12, 24, and 36 months after the procedure, respectively ($p=0.0002$ by log rank test). Whereas, the success rates of the benign strictures shorter than 2 cm were 74, 63 and 63%, while none of benign strictures longer than 2 cm were successful at 12, 24 and 36 months postoperatively, respectively ($p=0.0375$ by log rank test) (Table 3). Of the successful benign cases with a short segment at 12 months, 12 out of 14 (86%) showed a persistent long-term success at the 36 month follow-up.

Other prognostic factors, such as sex, age, location, disappearance of a waist, dilation time and hydronephrotic grade, were not found to influence the success rate (Table 2). A multivariate analysis revealed that etiology and stricture length were the only significant prognostic factors affecting the final outcome ($p=0.030$ and $p=0.0262$, respectively, by Cox's proportional hazards model).

Two patients experienced gross hematuria, for a few days postoperatively, which resolved spontaneously with conservative management. In one other patient, an ureteroenteral fistula was identified on retrograde pyelography at 1 month postoperatively, which was resolved without further complication following a further 3 weeks of double-J ureteral stenting.

Twenty-four of the 28 treatment failures (86%) occurred within the first 4 months following the

<table>
<thead>
<tr>
<th>Table 2. Success Rates and Significance of Prognostic Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prognostic Factor</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Etiology</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Length</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Sex</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Age</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Location</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Disappearance of a</td>
</tr>
<tr>
<td>Waist</td>
</tr>
<tr>
<td>Dilation Time</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Hydronephrotic Grade</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

mo, months.

*evaluated by log rank test.

†evaluated by Cox's proportional hazards model.
Table 3. Success Rates Stratified by Etiology and Length

<table>
<thead>
<tr>
<th>Prognostic Factor</th>
<th>Number</th>
<th>Success Rate (%)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>12 mo</td>
<td>24 mo</td>
</tr>
<tr>
<td>Benign ≤ 2 cm</td>
<td>19</td>
<td>74</td>
<td>63</td>
</tr>
<tr>
<td>Benign > 2 cm</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Malignant ≤ 2 cm</td>
<td>13</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>Malignant > 2 cm</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

mo, months.
*evaluated by log rank test.

Table 4. Management for 28 Failed Balloon Dilations

<table>
<thead>
<tr>
<th>Management</th>
<th>Number</th>
<th></th>
<th>Success</th>
<th>Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Benign</td>
<td>Malignant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observation*</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double-J Insertion</td>
<td>4</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nephrectomy</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeat Balloon Dilation</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Endoureterotomy</td>
<td>1</td>
<td>6</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

*Observation was done due to mild symptoms.

procedure and the management of these 28 failures is listed in Table 4. Three and 7 patients received repeat balloon dilation and endoureterotomy with a cold knife, respectively. Six patients showed successful outcome but 4 failed again. A double-J stent was indwelled in 2 cases and a percutaneous nephrostomy was performed for recurred strictures in a further 2.

DISCUSSION

With the rapid advance of endourologic instrumentation and techniques, most ureteral strictures can now be managed effectively by various endourologic procedures. Among the various available techniques, simple balloon dilation is one of the least invasive and cost-effective modalities for the treatment of an ureteral stricture. Although endourologic procedures for ureteral strictures have been known to be relatively safe, some reports on various endoureterotomic procedures, including Acucise balloon cautery, have shown that serious problems (like iliac artery laceration), although infrequent, could arise.13-16 However, complications induced by balloon dilation have been very rare.

Goldfischer and Gerber4 suggested in their review article that simple dilation and stent placement should be initially recommended for most patients with ureteral strictures due to its minimal morbidity and short hospitalization. However, rapid progress in the development of endourological instruments has enabled many urologists to switch to other advanced modalities, although simple balloon dilation remains a good treatment option for ureteral strictures. Consequently, there are insufficient data on the long-term results of balloon dilation, especially with retrograde approaches, which can avoid a percutaneous nephrostomy. Therefore, this study was prospectively conducted to investigate the long-term success rate of retrograde balloon dilation and the prognostic factors affecting the final outcome of the procedure in the treatment of ureteral strictures.
The reported success rates for balloon dilation vary from 20 to 85%.[5-11] Our study revealed a 35% success rate at 36 months postoperatively, this being at the lower end of the previously reported rates. However, this increased to 57% for strictures with benign etiologies. Richter et al.[31] reported only 21% (3 of 14 patients) success rate following balloon dilation for ureteral strictures that were secondary to malignancies. Our data also demonstrate a poor outcome for malignant strictures. Strictures secondary to operations and/or radiotherapy for malignancy could not be successfully treated by simple retrograde balloon dilation. We believe that the poor outcome of strictures with malignant etiologies was caused by the relatively wider ischemic damage to the ureter and/or from extrinsic ureteral obstructions. Simple balloon dilation should not be considered as a good option for strictures with malignant etiologies, as reported in the previous studies.

The 74% success rate for benign strictures with shorter segments at postoperative 12 months is comparable with the Acucise endoureterotomy results of Cohen et al.[13] and Preminger et al.,[14] and with the endoureterotomy results of Meretyk et al.[17] and Yamada et al.[18] In addition, 86% (12 out of 14) of the successful benign cases with shorter segments at 12 months showed excellent long-term results at 36 months, which were comparable to the results of Nadler et al.[19] Therefore, it is evident that for the appropriate patients, simple retrograde balloon dilation represents one of best modalities for ureteral strictures. We suggest that benign ureteral stricture with a shorter length (≤ 2 cm) would be an ideal candidate for simple retrograde balloon dilation.

The most appropriate duration for postoperative stenting remains to be defined. Since full regeneration of the ureteral muscular wall may require as long as 6 weeks, this interval has been most commonly chosen for postoperative stenting.[17,20] However, success with much shorter periods of stenting (1 to 3 weeks) have been reported, even as few as 5 days.[21,22] Kerbl et al.[23] demonstrated that a stent duration of only 1 week was sufficient in pigs. They thought that the inflammation associated with a chronic (6 week) indwelling stent was possibly the source of late fibrosis. We applied a shorter duration of stenting to minimize stent-related morbidity. Considering the success of the results with the benign cases in our series, a stent duration of 3 weeks seems to be more appropriate than 6 weeks.

The optimal stent size remains controversial. Several reports have suggested that a 4- to 10-F stent may produce good results, although tapered 14/7-F double pigtail catheters are most commonly used.[24-26] Moon et al.[25] suggested that after endoureterotomy in pigs, the primary function of the stent was to divert urine and act as a scaffold rather than a mold for the healing ureter. Therefore, a small, easily placed, 7-F stent may give the same degree of success as a larger, more cumbersome, 14-F stent. We adopted the former, which functioned well for benign cases. From our data, it appears that a 7-F ureteral catheter may produce good results in benign ureteral strictures.

Simple retrograde balloon dilation is a relatively less invasive method. With a retrograde approach, the need to perform a percutaneous nephrostomy is not required, so the potential problems associated with a percutaneous nephrostomy can be avoided. Three cases of complications related to retrograde balloon dilation occurred in our study. Two cases with gross hematuria were resolved with conservative management and the other, an ureterointestinal fistula, was identified on retrograde pyelography. The latter was a female patient who had undergone two operations, radiation therapy and chemotherapy for rectal cancer prior to the balloon dilation procedure. Her peri-stricture tissue must have been very fibrotic and adhered to the small bowel due to the variety of anti-cancer modalities. Therefore, we considered that the ureterointestinal fistula had developed despite the relatively less invasive balloon dilation. Fortunately, she experienced no symptoms related to the fistula, which was resolved after 3 weeks of Double-J ureteral stenting. As evident from the data on complications, a simple retrograde balloon dilation is a relatively safe modality for the treatment of ureteral strictures.

Many options remain available for the failed cases. Repeat dilation and endoureterotomy have been suggested by some authors as appropriate treatment methods for stricture recurrence.[17,27-29] Our success rate (60%) for the management of failed cases was comparable to previously re-
ported results that ranged from 50% to 82%. We suggest that repeat balloon dilation or an endo-
ureterotomy must be considered for the treatment of recurred cases before open surgical techniques
are applied.

In conclusion, simple retrograde balloon dilat-
ton, with its minimal invasiveness and acceptable
long-term results, is recommended as an effective
1st-line treatment modality for benign ureteral stricture with a short segment (≤ 2 cm), and a
3-week catheter indwelling is an acceptable
duration of stenting.

REFERENCES

1. Selzman AA, Spinnak JP. Intragenic ureteral injuries: a
155:878-81.
2. Fry DE, Milholen L, Harbrecht PJ. Intragenic ureteral
injury. Options in management. Arch Surg 1983;118:
454-7.
3. Silverstein JL, Libby C, Smith AD. Management of
ureteroscopic ureteral injuries. Urol Clin North Am
4. Goldfischer ER, Gerber GS. Endoscopic management of
5. Beckmann CF, Roth RA, Bihrlé III W. Dilation of
6. Myren CJ, Nielsen KD, Madson M, Nielsen HV.
Balloon dilation of ureteral strictures. Scand J Urol
7. Webber RJ, Pandian SS, McClinton S, Hussey J.
Retrograde balloon dilation for pelviureteric junction
obstruction: long-term follow-up. J Endourol 1997;11:
239-42.
8. Ravery V, De La Taille A, Hoffmann P, Moulinié F,
Hermieu JF, Delmas V, et al. Balloon catheter dilatation
in the treatment of ureteral and ureteroneocutaneous stricture.
junction obstruction and ureteral strictures treated by
simple high-pressure balloon dilation. J Endourol 1998;
10. Richter F, Irwin RJ Jr, Watson RA, Lang EK. Endouro-
logic management of benign ureteral strictures with
and without compromised vascular supply. Urology
11. Richter F, Irwin RJ Jr, Watson RA, Lang EK. Enduo-
logic management of malignant ureteral strictures.
12. Williams DJ, Kenawi MM. The prognosis of pelviu-
teric obstruction in children: a review of 190 cases. Eur
follow-up of Acucise incision of ureteropelvic junction
obstruction and ureteral strictures. Urology 1996;47:
317-23.
14. Preminger GM, Clayman RV, Nakada SY, Babayan RK,
investigating the use of a fluoroscopically controlled
cutting balloon catheter for the management of ureteral
and ureteropelvic junction obstruction. J Urol 1997;157:
1625-9.
15. Wolf JS Jr, Elashry OM, Clayman RV. Long-term
results of endoureterotomy for benign ureteral and
16. Kim FJ, Herrell SD, Jahoda AE, Albala DM. Complic-
433-6.
17. Meretyk S, Albala DM, Clayman RV, Denstedt JD,
Kavoussi LR. Endoureterotomy for treatment of ureteral
18. Yamada S, Ono Y, Ohshima S, Miyake K. Transurethral
ureteroscopic ureterotomy assisted by a prior balloon
dilation for relieving ureteral strictures. J Urol 1995;153:
1418-21.
19. Nadler RT, Rao GS, Pearle MS, Nakada SY, Clayman
RV. Acucise endopyelotomy: assessment of long-term
20. Davis DM, Strong GH, Drake WM. Intubated ureter-
otomy: experimental work and clinical results. J Urol
junction obstruction: is long-term stenting mandatory?
23. Kerbl K, Chandhoke PS, Eigenshaut RM, Stone AM,
Clayman RV. Effect of stent duration on ureteral
healing following endoureterotomy in an animal mo-
24. Kletshcer BA, Segura JW, LeRoy AJ, Patterson DE.
Percutaneous antegrade endoscopic pyelotomy: Review
25. Moon YT, Kerbl K, Pearle MS, Gardner SM, McDougall
diameter after endoureteric incision of ureteral strictures.
27. Glanz S, Gordon DH, Butt K, Rubin B, Hong J, Sclafani
SJ. Percutaneous transrenal balloon dilation of the
28. Kramelowsky EV, Clayman RV, Weyman P. Manage-
ment of ureterointestinal anastomotic strictures: com-
parison of open surgical and endourological repair.
29. Kwak S, Lee JH, Rosenblum JD. Percutaneous balloon
catheter dilatation of benign ureteral stricture: effect of
multiple dilation procedures on long term patency. Am