Successful Treatment of Pure Red Cell Aplasia with Plasmapheresis in a Patient with Systemic Lupus Erythematosus

Bo-Geum Choi and Wan-Hee Yoo

Department of Internal Medicine, Chonbuk National University Medical School and Research Institute of Clinical Medicine, Chonju, Korea.

Pure red cell aplasia (PRCA) is a rare cause of anemia associated with systemic lupus erythematosus (SLE), and fewer than 20 cases have been reported. The development of PRCA may be mediated by an autoimmune mechanism which is supported by the presence of antibodies that impair various stages and mechanisms of erythropoiesis, by the association with immunological disorders or lymphoma, and by a favorable response to immunosuppressive drugs, antilymphocyte globulin, thymectomy, and splenectomy. However, these therapies have not been successful in all patients with PRCA.

We report our experience with a 31-year-old female patient with SLE who developed PRCA that did not respond to immunosuppressive therapies. However, complete normalization of erythropoiesis was achieved after the removal of the autoantibodies by plasmapheresis, and the patient has now maintained a normal hemoglobin level for more than eight months. We suggest that plasmapheresis might be tried in the treatment of PRCA cases before other more aggressive therapies are commenced.

Key Words: Plasmapheresis, pure red cell aplasia, systemic lupus erythematosus

INTRODUCTION

Pure red cell aplasia (PRCA) is an unusual disorder characterized by severe normochromic normocytic anemia, reticulocytopenia and a markedly decreased number of erythroid progenitor cells, with otherwise normal bone marrow. It develops primary or secondary to infections, tumors, drugs, and autoimmune disorders, such as rheumatoid arthritis or systemic lupus erythematosus (SLE). There have been several reports of PRCA in SLE since 1968, and autoantibodies against erythropoietin or erythroid progenitors have been regarded as playing some role in the pathogenesis of PRCA in SLE. Several treatment methods have been applied to this disorder, including corticosteroids, immunosuppressive agents, erythropoietin, high dose intravenous immunoglobulins, and plasmapheresis. Especially, corticosteroids are the recommended initial mode of treatment for acquired PRCA. We describe a patient with SLE who developed PRCA that was refractory to immunosuppressive agents, but who was treated successfully with plasmapheresis. To our knowledge, four other cases of PRCA that were treated successfully with plasmapheresis have been reported, and we suggest that plasmapheresis may be attempted first in the treatment of SLE-associated PRCA.

CASE REPORT

A 31-year-old woman was referred to our department due to dizziness and fatigue experienced for three weeks. She had been diagnosed SLE five years earlier in accordance with the ACR criteria: malar rash, arthritis, photosensitivity, thrombo-
cytopenia (85,000/mm³), and the detection of antinuclear antibody (1:320, speckled pattern) and anti-dsDNA antibodies. She had been treated with low dose prednisolone and hydroxychloroquine (300 mg/day) for five years. On admission she looked pale and moon-faced with faint pink maculopapular rash over the cheeks and she had cardiac systolic murmur. Laboratory results showed a white blood cell count of 6,000/mm³, hemoglobin of 5.5 g/dL, hematocrit of 15.8%, reticulocytes of 0.1%, and platelet count of 286,000/mm³. Serum electrolytes, liver and kidney functions were normal. Coagulation tests were normal, with a prothrombin time of 100% (INR 1.0) and an activated partial thromboplastin time of 38.0 seconds (normal: 29.8-41.8). Antinuclear antibody was 1:640 (speckled pattern), anti-dsDNA antibody was 1121U/ml (normal: < 7), and both anti-Ro and anti-RNP tests were positive. Complement levels were low: C3 was 60.9 mg/dl (normal: 65-125) and C4 was 7.19 mg/dl (normal: 12-43). Tests for antiphospholipid antibody (IgG, IgM) and lupus anticoagulant were negative. Serologic tests for the HIV, cytomegalovirus, human B19 parvovirus, and Epstein-Barr virus were negative. Thoracic and abdominal computed tomographic scans revealed no evidence of thymoma, lymphoma or other solid tumors.

Work-ups for the evaluation of the patient’s severe anemia were done. Peripheral blood smear revealed normocytic and normochromic anemia. Stool occult blood was negative and serum haptoglobin level was 117 mg/dl. Iron binding capacity and the levels of serum iron, vitamin B12 and folate were all normal. Ham’s test, sucrose lysis test, direct and indirect Coombs’ tests were negative. The aspiration and biopsy specimens of bone marrow revealed normal cellularity with severe erythroid hypoplasia (myeloid: erythroid ratio, 45:1); findings compatible with red cell aplasia (Fig. 1). PRCA was diagnosed and the patient was initially treated with the transfusion of 6 units of packed red blood cells and prednisolone (1 mg/kg/day). There was no reticulocyte response after 3 weeks, and 6 units of packed red blood cells supplementation were required during this 3 week period. Then, she was treated with prednisolone (60 mg/day) and azathioprine (100 mg/day) for four weeks, but her Hb level decreased to 8.5 g/dl and reticulocyte count remained 0.1%. Subsequently, plasmapheresis was performed 5 times (3 times on the first 3 days and twice more within a week) with a tapering of prednisolone dosage. A modest increase of reticulocyte count (1.3%) occurred after the fourth course of plasmapheresis, and a marked increase in reticulocyte count (3.5%) was observed along with normalization of Hb level (12.3 g/dl) after the fifth course. During eight months of follow-up, she was well maintained normal Hb (12.2 g/dl) and reticulocyte counts (2.5%) with treatment consisting of low dose prednisolone (5 mg/day) and hydroxychloroquine (400 mg/day) (Fig. 2).

Fig. 1. Bone marrow biopsy specimen revealing that immature erythroid cells are apparently hypoplastic, but that the numbers of myeloid series and megakaryocytes are normal (A) (Hematoxylin-eosin stain, ×200). Bone marrow aspiration specimen also showing scanty erythroblasts with normal myeloid cells and megakaryocytes (B) (Wright stain, ×400).
DISCUSSION

SLE is an autoimmune disease that affects the connective tissue of the multisystem, and is characterized by extensive autoantibody production. Anemia is the most common hematologic abnormality seen in SLE and its causes are multiple: secondary to chronic disorder, hemolysis, hypersplenism, iron deficiency, gastrointestinal loss, renal disease and drug intake. PRCA is an unusual cause of anemia in SLE, reported in 18 patients to date. However, there has hitherto been no Korean report of PRCA in a SLE patient. The patient of the present study developed PRCA as a part of SLE. After the failure of high dose glucocorticoid and azathioprine therapy, she was treated with plasmapheresis and showed dramatic and persistent improvement.

PRCA is generally regarded as an autoimmune disorder and associated with autoantibody formation. Erythroid progenitors, erythroblasts, and erythropoietin are all potential targets of erythropoiesis inhibitors in PRCA. Several studies of this disorder have reported the presence of inhibitors of bone marrow erythroblasts, erythroid stem cell differentiation, and erythropoietin-responding cells, along with antibodies against erythropoietin. T cell mediated inhibition of erythropoiesis may also be involved in the pathogenesis of SLE-associated PRCA. According to the report of Kiely et al., culture of T cell-depleted marrow mononuclear cell from a patient with SLE-associated PRCA resulted in increased early erythroid colonies (BFU-E) and granulocyte-macrophage colonies (CFU-GM). The demonstration of an immune pathogenesis in PRCA provides a rationale
for its treatment with immunomodulation. Corti-
costeroids have been the recommended initial
mode of treatment for PRCA, while in patients
who are refractory to corticosteroid, cytotoxic
drugs such as cyclophosphamide, azathioprine,
cyclosporine, and splenectomy have been suc-
cessfully used. Orbach et al.17 reviewed 6 case
reports of PRCA that were treated successfully
with human recombinant erythropoietin. Rarely,
intravenous immunoglobulin27 and plasmaphere-
sis12-25 have been used as a therapeutic modality
for PRCA.

Despite the wide spectrum of diseases currently
treated with plasmapheresis such as Guillain-
Barre’s syndrome, thrombotic thrombocytopenic
purpura, myasthenia gravis, Goodpasture’s syn-
drome and other autoimmune diseases, the clin-
ical effectiveness of this treatment has been estab-
lished only in a few clinical conditions. Consi-
dering the pathogenic role of the multiple
autoantibodies detected in SLE, their removal by
plasmapheresis may result in complete remission
of erythropoiesis. To our knowledge, four other
cases of PRCA successfully treated with plasmaphere-
sis have been reported previously.22-25 In this
group complete remission was achieved in three
cases and partial response in one case. The plasma
of these four patients contained inhibitors against
the differentiation of BFU-E or CFU-E. As in the
case reported by Khelif A et al.25 a certain serum
inhibitor present in our patient could have reacted
against early RBC progenitors, in view of the time
of response to plasmapheresis and the estimated
maturation time from stem cells to reticulocytes of
about 10 days.

However, the mechanisms of persistent remis-
sion after plasmapheresis have not been fully
explained. Messner et al.12 suggested that a factor
in the plasma substitute may provide or induce
the release of erythropoietic stimulators with
burst-promoting activity. Complete blockage
of antibody production by plasmapheresis was noted
during an anamnestic response to bovine albumin
in rabbits,18 and this phenomenon was suggested
as another mechanism for the observed persistent
remission of PRCA by plasmapheresis. The nat-
ural course of this disease may be due to the pro-
longed effect of plasmapheresis. It is not known
whether the characteristic clinical courses and
response to therapy indicate a homogenous subset
of the disease, and further clinical and laboratory
studies are required.

In summary, SLE-associated PRCA is a rare dis-
order whose optimal management has remained
uncertain. The value of combined treatment with
steroids and cytotoxic drugs has been demon-
strated by a higher remission rate, but such vigor-
os immunosuppressive treatment carries in-
creased risks of serious infection, malignancy,
sterility and other side effects. In addition, some
patients have failed to respond to this modality.
Therefore, we suggest that an individualized
approach for the management of SLE-associated
PRCA is required, and furthermore, that plasmaphere-
sis might be tried in the treatment of autoimmunity re.
cell aplasia before more aggressive
therapy is commenced.

REFERENCES

1. Ammus SS, Yunis AA. Acquired pure red cell aplasia.
2. Dessypris EN. The biology of pure red cell aplasia.
3. Daughaday WH, Brinker RA, Osterland KC. Lupus
erythematosus with severe anemia, selective erythroid
hypoplasia and multiple red blood cell isoantibodies.
4. Cassileth PA, Myers AP. Erythroid aplasia in systemic
5. Myers RJ, Hoffman R, Zanjani ED. Autoimmune
hemolytic anemia and periodic pure red cell aplasia in
342-5.
6. Linardaki GD, Boki KA, Furtakis A, Tzioufas AG. Pure
red cell aplasia as presentation of systemic lupus
erythematosus antibodies to erythropoietin. Scand J
7. Kiely PD, McCaggin CP, Collins DA, Bevan DH, Marsh
JCM. Erythrocyte aplasia and systemic lupus
8. Cavalcant J, Shadduck RK, Winkelstein A, Ziegler Z,
Mendelow H. Red cell hypoplasia and increased
narrow reticulin in systemic lupus erythematosus.
Reversal with corticosteroid therapy. Am J Hematol 1978;5:
253-65.
9. Nitsche A, Taborda GD, Bouveta HM, d’Antonio CC,
Gronda MV. Pure red cell aplasia in a patient with
systemic lupus erythematosus. J Rheumatol 1988;15:
1012-3.
10. Duarte-Salazar C, Cazarin-Barrientos J, Goyochoa-
Robles MV, Collazo-Jaloma J, Burgos-Vargas R. Sue-
cessful treatment of pure red cell aplasia associated
with systemic lupus erythematosus with cyclosporin A.
11. Orbach H, Ben-Yehuda A, Ben-Yehuda D, Manor D,
Rubinow A, Naparstek Y. Successful treatment of pure
red cell aplasia in systemic lupus erythematosus with
12. Messner HA, Fauser AA, Curtis JE, Dotten AD. Control
after plasmapheresis in acquired pure red cell anemia.
14. Bussel A, Milcu M, Stîrîty X. Indications therapeu-
Actualités Hematologiques; 16e serie Paris: Masson;
Motin J, et al. Remission of acquired pure red cell
aplasia following plasma exchanges. Scand J Haematol
16. Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ,
Rothfield NF, et al. The 1982 revised criteria for the
classification of systemic lupus erythematosus. Arthritis
17. Ilan Y, Naparstek Y. Pure red cell aplasia associated
with systemic lupus erythematosus remission after a
single course of intravenous immunoglobulin. Acta
Haematol 1993;89:152-4.
18. Branda RF, Moldow CF, McCullough JJ, Jacob HS.
Plasma exchange in the treatment of immune disease.