Cyclin E Expression in Benign and Malignant Epithelial Neoplasms of the Gallbladder

Yoon Mi Jin, Hyunee Yim, and Chull Shim

Cyclins are the regulatory subunits of cyclin-dependent kinase and play an important role in cell proliferation. Many tumors, such as colon, breast and gastric carcinomas are known to be involved in the deregulation or amplification of cyclins, especially cyclin E, which involves the restriction point of G1-S transition. We investigated the expression of cyclin E in benign and malignant epithelial tumors of the gallbladder and compared the results with the activity of cell proliferation by the Ki67 antigen using immunohistochemical staining. Cyclin E was expressed in the adenocarcinoma tissue in 33.3% of patients (4 out of 12 cases), whereas only one out of 8 cases of adenoma expressed cyclin E (12.5%). There was a correlation between cyclin E expression and the Ki67 labeling index. These results suggest that the high expression of cyclin E in adenocarcinoma of the gallbladder is related to a high rate of cell proliferation.

Key Words: Adenocarcinoma, adenoma, cyclin E, Ki67, gallbladder

Cyclins are essential proteins in cell-cycle regulation that are associated with and activate different cyclin-dependent kinases at different stages of the cell cycle and allow them to pass through a specific stage in the cycle (Dutta et al. 1995; Wang et al. 1996). In mammalian cells, at least five different cyclins were identified (Sherr, 1993). Cyclins D1 and E are known to cooperate with cdk2 and function in the G1 phase and in the G1-S transition, thus they are called G1 cyclins. Cyclins A and B play an important role in the G2-M phase with cdc2 and are referred to as 'mitotic cyclins' (Koff et al. 1991; Xia et al. 1992). Because each cyclin marks a different phase of cell-cycle-E for G1 and early S, A for S and G2, B for late G2 (Pines and Hunter, 1991; Dulic et al. 1992; Koff et al. 1992)- the fraction of cells positive for a given cyclin should represent the fraction in a corresponding phase of the cell cycle. Furthermore, several malignant tumors express different types of cyclins: cyclin D1 in parathyroid adenoma (Motokura et al. 1991), cyclin E in breast cancer (Keyomarsi et al. 1994), and cyclin B and E in leukemia or solid tumor cell lines (Gong et al. 1994). Among the various cyclins, cyclin E seems to have the most important role in tumorigenesis, considering that it is involved in the restriction point of G1-S transition.

Since there have been no reports about the expression of cyclin E in the benign and malignant epithelial neoplasms of the gallbladder, we studied the expression of cyclin E by use of immunohistochemical staining. The results were compared with the cell-proliferation indices using Ki67 antigen immunohistochemical staining.

Received August 7, 1997
Accepted September 24, 1997
Department of Pathology, Ajou University School of Medicine
Address reprint request to Dr. Y.M. Jin, Department of Pathology, Ajou University Hospital, San 5, Wonchon-dong, Paldal-gu, Kyongki-do, Suwon, Korea
Yoon Mi Jin, et al.

MATERIALS AND METHODS

Patients selection

Specimens from 20 patients who had undergone cholecystectomy at Ajou University Hospital for benign and malignant epithelial tumors of the gallbladder were selected on the basis of tissue availability. Twelve patients were diagnosed as adenocarcinoma and 8 as adenoma. Clinical information and pathologic characteristics were collected for all cases (Table 1, 2). Hematoxylin and eosin (H&E) stained sections were evaluated and graded to three categories (well, moderately and poorly differentiated) according to the degree of differentiation (Table 1). The cases of adenoma were categorized into two groups according to the presence or absence of atypia (Table 2).

Immunohistochemical staining technique

Immunohistochemical staining for cyclin E and Ki67 was performed on formalin-fixed, paraffin-embedded sections by the avidin-biotin peroxidase complex (ABC) method (Hsu et al. 1981). The monoclonal antibody NCL-Ki67-MM1 (Novoceastra, Newcastle, UK) was used for the studies of Ki67 expression, and HE12 (Pharmingen, San Diego, CA, USA) for cyclin E expression. The primary antibodies were incubated at 4°C for 12- to 16 hours, followed by incubation with biotinylated secondary antibody of LSAB kit (Dako, Carpinteria, CA, USA). Reaction products were visualized by immersion of the sections in 3,3’-diaminobenzidine.

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Sex/Age</th>
<th>Size(cm)</th>
<th>Gross feature</th>
<th>Differentiation</th>
<th>Extension</th>
<th>LN involvement</th>
<th>Cyclin E</th>
<th>Ki67</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M/60</td>
<td>4.5×3</td>
<td>Diffuse</td>
<td>Well</td>
<td>Liver</td>
<td>1/8</td>
<td>+</td>
<td>264</td>
</tr>
<tr>
<td>2</td>
<td>F/61</td>
<td>3.5×1.5</td>
<td>Fungating</td>
<td>Well</td>
<td>Proper muscle</td>
<td>-</td>
<td>-</td>
<td>73</td>
</tr>
<tr>
<td>3</td>
<td>M/73</td>
<td>7×3</td>
<td>Diffuse</td>
<td>Well</td>
<td>Liver</td>
<td>-</td>
<td>+</td>
<td>703</td>
</tr>
<tr>
<td>4</td>
<td>F/69</td>
<td>2.5×2.2</td>
<td>Diffuse</td>
<td>Moderate</td>
<td>Liver</td>
<td>-</td>
<td>-</td>
<td>382</td>
</tr>
<tr>
<td>5</td>
<td>M/61</td>
<td>8×7</td>
<td>Diffuse</td>
<td>Poor</td>
<td>Liver, colon</td>
<td>1/10</td>
<td>+</td>
<td>268</td>
</tr>
<tr>
<td>6</td>
<td>M/44</td>
<td>4.5×3.5</td>
<td>Fungating</td>
<td>Well</td>
<td>Liver</td>
<td>0/9</td>
<td>-</td>
<td>162</td>
</tr>
<tr>
<td>7</td>
<td>F/62</td>
<td>5×3</td>
<td>Diffuse</td>
<td>Moderate</td>
<td>Liver</td>
<td>1/7</td>
<td>-</td>
<td>76</td>
</tr>
<tr>
<td>8</td>
<td>F/60</td>
<td>4</td>
<td>Diffuse</td>
<td>Well</td>
<td>Perimucosal</td>
<td>-</td>
<td>-</td>
<td>342</td>
</tr>
<tr>
<td>9</td>
<td>F/64</td>
<td>3.5×2.5</td>
<td>Fungating</td>
<td>Moderate</td>
<td>Perimucosal</td>
<td>-</td>
<td>+</td>
<td>385</td>
</tr>
<tr>
<td>10</td>
<td>F/79</td>
<td>4</td>
<td>Diffuse</td>
<td>Moderate</td>
<td>Perimucosal</td>
<td>-</td>
<td>-</td>
<td>237</td>
</tr>
<tr>
<td>11</td>
<td>F/67</td>
<td>3×2.2</td>
<td>Fungating</td>
<td>Well</td>
<td>Mucosa</td>
<td>0/4</td>
<td>-</td>
<td>158</td>
</tr>
<tr>
<td>12</td>
<td>M/49</td>
<td>2×2</td>
<td>Fungating</td>
<td>Well</td>
<td>Mucosa</td>
<td>-</td>
<td>-</td>
<td>173</td>
</tr>
</tbody>
</table>

Table 2. Clinical data, cyclin E expression and Ki67 labeling indices in adenoma

<table>
<thead>
<tr>
<th>Patients no.</th>
<th>Sex/Age</th>
<th>Size(cm)</th>
<th>Atypia</th>
<th>Cyclin E</th>
<th>Ki67</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M/37</td>
<td>0.8×0.7</td>
<td>-</td>
<td>-</td>
<td>122</td>
</tr>
<tr>
<td>2</td>
<td>F/46</td>
<td>2.5×2, 0.7, 0.5</td>
<td>+</td>
<td>-</td>
<td>130</td>
</tr>
<tr>
<td>3</td>
<td>F/67</td>
<td>1×0.7</td>
<td>-</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>F/37</td>
<td>0.5×0.4</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>F/73</td>
<td>1×0.8</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>M/49</td>
<td>2.5×2</td>
<td>+</td>
<td>-</td>
<td>45</td>
</tr>
<tr>
<td>7</td>
<td>M/35</td>
<td>1×0.8</td>
<td>+</td>
<td>-</td>
<td>226</td>
</tr>
<tr>
<td>8</td>
<td>F/54</td>
<td>3×1.4</td>
<td>+</td>
<td>+</td>
<td>81</td>
</tr>
</tbody>
</table>

*: Three separate adenomas were present in this case.
Fig. 1. A: Immunohistochemical staining with anti Ki67 in adenocarcinoma of the gallbladder. Carcinoma nests showing high rate of Ki67 expression (×200). B: Immunohistochemical staining with anti Ki67 in adenoma showing a few scattered positive reactions (×200).

Fig. 2. Cyclin E expression in the nuclei of cells in adenocarcinoma (Immunohistochemical staining, ×200).
tetrahydrochloride solution (Sigma Chemicals, St. Louis, MO, USA) containing hydrogen peroxide. The sections were counterstained with Meyer's hematoxylin. The results for cyclin E were evaluated as positive and negative. Nuclear staining was considered to be positive. The Ki67 labeling indices were determined in both benign and malignant tumors. A total of 500-1000 tumor cells were counted in each case. Nuclei with well-defined brown granular staining were considered to be positive. Ki67 labeling indices were calculated as the number of positive nuclei per 1000 nuclei counted.

Statistics

Nonparametric tests were used to analyze our data. The Mann-Whitney U test was used to compare data between two groups. A p value of <0.05 was considered statistically significant.

RESULTS

Ki67 labeling indices in adenoma and adenocarcinoma of the gallbladder

The adenocarcinoma tissues possessed much higher labeling indices than the adenoma tissues (268 vs 76, p<0.05, Table 1, 2 and Fig. 1). In the adenoma group, the cases with atypia showed much higher labeling indices than those without atypia.

Cyclin E expression in the adenoma and adenocarcinoma of the gallbladder

Only one of 8 cases of adenoma expressed cyclin E (12.5%, Table 2) and this case also showed significant atypia. Among the cases of adenocarcinoma, 4 out of 12 (33.3%) were stained with cyclin E (Table 1). All the positive staining were in the nuclei (Fig. 2). None of the nearby nonneoplastic biliary epithelium was positive. There was a much higher incidence of cyclin E expression among the cases with extension to the liver or metastasis to the colon than those confined to the gallbladder (50% vs 14.2 %, Table 1).

Correlation between Ki67 labeling indices and cyclin E expression in the adenocarcinoma of the gallbladder

The adenocarcinoma cases with cyclin E expression showed a much higher labelling index than those without cyclin E expression (405 vs 200, p<0.05, Table 1).

DISCUSSION

Gallbladder cancer is a relatively rare neoplasm accounting for about 0.3-0.7% of all cancer cases (Albores-Saavedra and Henson, 1984). The tumor has a peak incidence in the age group from 70-79 years, is more common in females (Albores-Saavedra and Henson, 1984) and is frequently associated with cholelithiasis and cholecystitis.

Multistep genetic changes are associated with the development of human cancer (Fearon and Vogelstein, 1990) and many genetic changes are reported to be associated to the development of cancer, such as p53. However, few are reported to involve the development of gallbladder cancer: only the p53 and c-erbB2 proteins are known to play some role in the neoplastic transformation of gallbladder epithelial cells (Kamel et al. 1993).

In attempts to understand the relationship between the cell cycle and cancer, many laboratories have investigated the role of cyclin/cdk complexes in carcinogenesis. The cyclin A gene is the site of integration of a fragment of the hepatitis B virus genome in hepatocellular carcinogenesis (Wang et al. 1990). It is also associated with the adenovirus oncoprotein E1A in adenovirus-transformed cell lines (Pines and Hunter, 1990). The cyclin D1 locus (Prad1) is known to be overexpressed due to a chromosomal rearrangement that translocates it to the enhancer of the parathyroid hormone gene (Matsushime et al. 1991; Motokura et al. 1991; Quelle et al. 1993). Prad1 has also been found to reside near the B cell lymphoma-associated chromosome 11 breakpoint (known as BCL1) which can be activated by t(11;14) translocations (Rosenberg et al. 1991). The cyclin D1 is also known to be amplified.
Cyclin E Expression in Neoplasms of Gallbladder

and overexpressed in some cases of liver cancer, breast cancer and esophageal cancer (Jiang et al. 1992; Zhang et al. 1993; Bartkova et al. 1994a; Bartkova et al. 1994b). Cyclin E expression is known to have striking abnormalities in neoplasia. Qualitative and quantitative alteration in cyclin E expression in breast cancer and other solid tumors independent of the S-phase fraction has been documented (Keyomarsi et al. 1994) and its expression is associated with breast tumor stage and grade. Cyclin E is also overexpressed in colon and gastric cancer (Akama et al. 1995; Wang et al. 1996). Cyclin E seems to have the most important role in carcinogenesis considering that it is involved in the restriction point of G1-S transition. In this study, we found that cyclin E was expressed in about 33% of gallbladder cancers in keeping with a high level of Ki67 labeling indices. Expression of the cyclin E protein was specific to neoplastic epithelium and was not seen in adjacent normal tissue, suggesting that expression of cyclin E was a marker for oncogenesis and not just for proliferation. Cyclin E was expressed in one case of adenoma (12.5%). In view of the fact that the latter case exhibited significant atypia, we speculated that adenoma, especially with atypia, is a premalignant condition and supports multistep carcinogenesis in the development of gallbladder cancer. Our results showed that there was a correlation between cyclin E expression and Ki67 labeling indices; this result does not support the notion that deregulation of cyclin E is associated with the development of gallbladder cancer. The positive staining of the cyclin E protein in cancer tissue could be because of the overexpression of this cyclin, due to amplification of this cyclin gene, or due to the failure to appropriately degrade the cyclin messages in the cell cycle (Keyomarsi and Pardee, 1993). Our study does not permit an explanation of the precise mechanism of cyclin E expression in a neoplasm. Further study at the molecular level will be necessary. As expected, the Ki67 labeling indices were much higher in the cases of adenocarcinoma than adenoma.

We conclude that cyclin E expression seems to be one of the factors contributing to the uncontrolled proliferation of gallbladder cancer cells. Since its expression was in keeping with the proliferation rate of tumor cells in our study and other researches (Dou et al. 1993; Jansen-Durr et al. 1993; Knoblich et al. 1994; Wang et al. 1996), we suggest that cyclin E also can be used as a marker of proliferation.

REFERENCES

Yoon Mi Jin, et al.

J Pathol 170: 67-72, 1993