Clear Cell Sarcoma of the Kidney

-Immunohistochemical study and flow cytometric DNA analysis of 7 cases-

Yoon-Jung Choi, Woo-Hee Jung, Soon-Hee Jung¹ and Chanil Park

Immunohistochemical study and flow cytometric DNA analysis were done on seven cases of clear cell sarcoma of the kidney (CCSK) to speculate its histogenesis and to access the diagnostic usefulness of these methods in the differential diagnosis of Wilms’ tumor. Clinically, CCSK is a rare malignant renal tumor of children with a propensity to metastasize to bone. Arborizing vascular pattern surrounding the tumor cells which have clear cytoplasm is characteristic histologic finding. Immunohistochemically, only vimentin was diffusely demonstrated in the tumor cell membrane and cytoplasm. In flow cytometric DNA analysis, four cases showed diploidy and two cases near diploidy. CCSK is a separate disease entity with characteristic clinicopathologic, immunohistochemical and flow cytometric findings in distinction from Wilms’ tumor. Considering the histologic and immunohistochemical findings, the possible histogenetic mechanism of CCSK seems to be in common with congenital mesoblastic nephroma (CMN), that is primitive mesenchymal cells which committed early stromagenic activity.

Key Words: Clear cell sarcoma of the kidney (CCSK), immunohistochemistry, flow cytometric DNA analysis, histogenesis

Clear cell sarcoma of the kidney (CCSK) is a rare malignant renal tumor of children with a characteristic histologic pattern and a marked propensity to metastasize to bone. As a clinicopathologic entity, CCSK was first recognized by Kidd in 1970. Since then, additional cases have been added in the literature under the names of bone metastasizing renal tumor of childhood (Marsden et al. 1978; Marsden and Lawler, 1980), undifferentiated sarcoma of the kidney (Morgan et al. 1978) or sarcomatous renal tumor of childhood (Novak et al. 1980). Although clinicopathologic characteristics of CCSK have been well established and CCSK was known as a distinct entity from Wilms’ tumor, there is still ongoing controversy to its histogenesis. A variety of histogenetic possibilities such as renomedullary interstitial cells (Beckwith 1982; Hass et al. 1984), transitional cells between mesenchymal and blastemal cells (Beckwith 1982, Hass et al. 1984) and blastemal cap cell (Marsden et al. 1978) have been proposed on the basis of ultrastructural and immunohistochemical studies.

In this study, immunohistochemistry and flow cytometric DNA analysis were performed on seven cases of CCSK to speculate the histogenesis of this tumor and to access the diagnostic usefulness of these methods in the differential diagnosis of Wilms’ tumor.

MATERIALS AND METHODS

Six cases of CCSK diagnosed between 1980
Clear Cell Sarcoma of the Kidney

and 1990 from the files of Department of Pathology, Yonsei University College of Medicine, Seoul, Korea and one case provided by Kosin College of Medicine, Pusan, Korea, were analysed.

Review of medical records

Age, sex, age at diagnosis, primary site of tumor, clinical stage, treatment modality and follow-up data of each case were reviewed.

Gross and histopathologic examination

Gross description and gross photo of each case were reviewed and 5µm thick sections of formalin-fixed, paraffin-embedded tissue of each case were stained with hematoxylin-eosin, reticulin, periodic acid-Schiff (PAS) and PAS with diastase digestion (DPAS).

Immunohistochemical stain

4–5µm thick sections of formalin-fixed, paraffin-embedded tissue of each case were stained with a labeled streptavidin biotin (LSAB, DAKO Corp, Santa Barbara, U.S.A.) kit with diaminobenzidine (DAB) as a chromogen and counterstained with Mayer hematoxylin. Monoclonal antibodies used in this study include cytokeratin (cocktail, Biomedica, U.S.A.), vimentin (Biomedica), smooth muscle actin (Biomedica) and desmin (Biomedica).

Flow cytometric DNA analysis

Two or three 50 micron sections, cut from the tissue blocks were deparaffinized in Histoclear (National Diagnostics, Manville, U.S.A.) and rehydrated in a series of graded alcohols by the method of Hedley et al. (1985). After pepsin (2.5 ml of 0.5% pepsin at pH 1.5 at 37°C for 30 minutes, DIFCO, Michigan, U.S.A.) and ribonuclease (0.5ml of RNase 2.50 mg/ml), Sigma Chemical Corp, St. Louis, U.S.A.) treatment, the samples were filtered through a 50 micron nylon mesh filter and stained with 0.025% propidium iodide (50 ul/ml, Sigma Chemical Corp. St. Louis, U.S.A.). Nuclei were analyzed in a FACSscan (Becton-Dickinson, Sunnyvale, U.S.A.) with at least 20,000 nuclei read per sample. Normal kidney tissue was used as control. The first G0/G1 peak was assumed to be the diploid population and assigned a DNA index of 1.0. DNA aneuploidy was defined by the presence of a distinct, separate second peak to the right of the first G0/G1 peak accompanied by a low G0/M hump. The DNA index was calculated by the ratio of the channel number of the abnormal aneuploid peak to that of the normal diploid G0/G1 peak.

RESULT

Clinical findings

Clinical, flow cytometric characteristics and follow-up data of each patient are summarized in Table 1.

The age distribution of the patients was from 4 months to 3 years and one month. Male to female ratio was 5:2. All cases involved unilateral kidney (R:L=2:5). No associated congenital anomaly was noted in any of the cases. Clinical staging was done according to the National Wilms' Tumor Study (NWTS, D'Angio et al. 1976). At the time of diagnosis, tumor was confined to the kidney (stage I) in two patients, extended beyond the kidney (stage II) in three patients and spread to periaortic lymph nodes (Stage III) in two patients. All three cases with stage II eventually progressed to stage IV with metastatic lesion in bone and liver after operation.

Primary tumors were surgically excised and postoperative chemotherapy with cytotoxan, vincristine and actinomycin D was performed in all the patients. In addition, radiotherapy was given to one patient (case No. 7).

Four patients (case No. 1, 2, 3 and 4) died of disease in 11, 11, 36 and 17 months after diagnosis, respectively. Three patients (case No. 5, 6 and 7) are alive with disease in 13, 18 and 14 months after finishing treatment.

Pathological findings

Gross appearance: The gross appearance of CCSK was distinguished from that of classic Wilms' tumor. The cut surfaces are usually homogeneous tan or gray-white with firm to rubbery consistency. The margin of the tumor revealed mostly infiltrative feature to the adjacent renal parenchyma. Hemorrhagic ne-
crosis was uncommon and cystic spaces with variable size were frequently found. All tumors weighed 450 gm or more; one of the tumors was exceptionally large, weighing 1080 gm (case No. 1).

Histologic findings: Microscopically, CCSK was typically composed of cells with poorly stained indistinct clear cytoplasm. On periodic acid-Schiff (PAS) and PAS with diastase digestion, cytoplasms were not stained. Nuclei

<table>
<thead>
<tr>
<th>No.</th>
<th>Age(year)</th>
<th>Sex</th>
<th>Weight(gm)</th>
<th>Stage</th>
<th>Metastasis</th>
<th>DNA Index</th>
<th>Follow up</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td></td>
<td>M</td>
<td>500</td>
<td>I</td>
<td></td>
<td>1.11</td>
<td>DOD</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>M</td>
<td>800</td>
<td>III</td>
<td></td>
<td>1.13</td>
<td>DOD</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>F</td>
<td>870</td>
<td>II→IV</td>
<td>liver (post op. 16 mo.)</td>
<td>1.0</td>
<td>DOD</td>
</tr>
<tr>
<td>5.</td>
<td>2.5/12</td>
<td>M</td>
<td>463</td>
<td>I</td>
<td>bone (post op. 12 mo.)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>M</td>
<td>488</td>
<td>II→IV</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>2</td>
<td>F</td>
<td>710</td>
<td>II→IV</td>
<td>bone (post op. 10 mo.)</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

DOD: died of disease
AWD: alive with disease
Post op.: post operation

Fig. 1A. The tumor cells show round to ovoid vesicular nuclei and polygonal clear cytoplasm (H&E, ×100).
Clear Cell Sarcoma of the Kidney

Fig. 1B. The tumor cells grow in the characteristic pattern of ill defined nests or sheets separated by arborizing fibrovascular stroma (H&E, ×40).

Fig. 2. The tumor cells show diffuse cytoplasmic positive reaction for vimentin (Immunoperoxidase, ×400).
were oval to round, of uniform size with fine granular chromatin and showed a few mitotic figures from area to area (Fig. 1A). Tumor cells were divided into nests or cords by prominent, arborizing networks of small blood vessels supported by spindle cell stroma (Fig. 1B). Reticulin stain accentuated vascular pattern clearly, which was known to be an important clue to make a diagnosis (Beckwith, 1983). Some entrapped renal tubules, some of which forming cysts, were present in most cases. No blastemal tissue was found. Other histologic variants such as epitheloid trabecular, neurilemnomalike nuclear palisading, fibrotic-hyalinized and angiectatic pattern were not present in our cases.

Immunohistochemical findings: Immunohistochemically, vimentin was diffusely demonstrated in the tumor cell membranes and cytoplasmas (Fig. 2). Cytokeratin, actin and desmin were negative. In contrast, entrapped renal tubules which were located in peripheral portions of tumor revealed positive reaction for cytokeratin.

Flow cytometric DNA analysis: Four cases showed diploidy with DNA index of 1.0 and two cases had near-diploidy with DNA index of 1.11 and 1.13. One case (case No. 1) failed to be interpreted due to multiple broad peaks.

DISCUSSION

Clear cell sarcoma of the kidney is an uncommon renal malignancy estimated to constitute only 4% of childhood renal tumors (Beckwith, 1983) and is recognized as a distinct entity with an aggressive biologic behavior. There are considerable difficulty in differentiating this tumor from the more common occurring Wilms' tumor on the basis of clinical, radiological and histological features. Previously, CCSK diagnosed as Wilms' tumor showing sarcomatoid feature but having different histologic and clinical findings has been reported. CCSK was first recognized by Kidd (1970) as an sarcoma of the kidney with predisposition to metastasize to bone. The descriptive term 'clear cell' was originally proposed by Beckwith and Palmer (1978) to distinguish this tumor from the malignant rhabdoid tumor in terms of histologic characteristics. Sotelo-Avila et al. (1986) reviewed 21 cases of CCSK and reported additional 12 cases with single or multiple osseous metastasis to skull, spine, rib and femur, etc. In our small series, only two cases showed bone metastasis, one in tibia and one in vertebrae after surgery. The predilection for bone metastasis is well known but its pathogenesis is not clear. It probably appears to be determined partly by the anatomy of the venous return of kidney via Bason's plexus along the axial skeleton (Sotelo-Avila et al. 1986). In addition, renal vein and thoracic duct may play roles as disseminating routes if tumor cells are not filtered out by the capillaries of lung. Compared to Wilms' tumor (Table 2), CCSK reveals poorly demarcated tumor margin, firmer consistency and frequent peripheral cystic changes, grossly. Histologically, large vesicular nuclei with clear cytoplasms and characteristic arborizing fibrovascular network can help to establish the diagnosis. However, in some cases, distinct differential diagnosis is difficult especially in case of blastemal predominant Wilms' tumor in which blastemal cells often show clear cell change. In addition, entrapped normal tubules and glomeruli within the edge of the tumor can be misinterpreted as the neoplastic epithelial components of Wilms' tumor. Several immunohistochemical studies (Altmannberger et al. 1984; Takagi et al. 1987) demonstrated only expression of vimentin in tumor cells of CCSK. And peanut agglutinin (PNA) lectin reacted only with luminal surfaces of the apparent tubular structures (Takagi et al. 1987). No tumor cells surrounding the tubular structures reacted with PNA lectin. Since the PNA lectin staining pattern of this structure in CCSK is the same as that of residual normal renal tubules, they are considered to be entrapped renal tubules. Some investigators also consider those structures to be nonneoplastic components because of their absence in the metastatic lesion (Beckwith, 1983). In our study, tumor cells only reacted with vimentin in contrast that the peripheral tubular structures reacted with cytokeratin. In Wilms' tumor, characteristic blastemal tissue reacts with both cytokeratin
Table 2. Comparison of clinical, pathological findings and DNA ploidy pattern between CCSK and Wilms’ tumor

<table>
<thead>
<tr>
<th>Clinical findings</th>
<th>CCSK</th>
<th>Wilms’ tumor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone metastasis</td>
<td>frequent (17~100%)</td>
<td>rare</td>
</tr>
<tr>
<td>Recurrence</td>
<td>frequent</td>
<td>rare</td>
</tr>
<tr>
<td>Pronosis</td>
<td>poor (mortality rate: >35%)</td>
<td>good (cure rate: 80~90%)</td>
</tr>
<tr>
<td>Pathologic findings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumor margin</td>
<td>well or poorly demarcated</td>
<td>well demarcated</td>
</tr>
<tr>
<td>Consistency</td>
<td>firm</td>
<td>soft & friable</td>
</tr>
<tr>
<td>Cystic change</td>
<td>common (peripheral)</td>
<td>rare</td>
</tr>
<tr>
<td>Microscopic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth pattern</td>
<td>diffuse trabecular</td>
<td>triphasic (epithelial, blastema, stromal)</td>
</tr>
<tr>
<td>Cell shape</td>
<td>round to oval with clear cytoplasm</td>
<td>pleomorphic</td>
</tr>
<tr>
<td>Arborizing vessel</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Entrapped normal tubule</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Immunohistochemical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vimentin</td>
<td>+</td>
<td>epi. +/- stroma</td>
</tr>
<tr>
<td>Cytokeratin</td>
<td>-</td>
<td>+/-</td>
</tr>
<tr>
<td>Actin</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Desmin</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>DNA ploidy pattern</td>
<td>diploid</td>
<td>favorable histology: diploid</td>
</tr>
</tbody>
</table>

epi: Epithelial component

and vimentin (Altmannsberger et al. 1984; Sibley et al. 1984; Takagi et al. 1987; Choi et al. 1993). Therefore, cytokeratin is greatly helpful in confirming the presence of blastemal component and useful in diagnosis of Wilms’ tumor. In considering the combined histologic, immunohistochemical and electron microscopic features of CCSK, which was previously suggested by others (Altmannsberger et al. 1984; Hass et al. 1984; Takagi et al. 1987), a number of histogenetic possibilities deserve speculation. Recently, primitive mesenchymal cells which committed early stromagenic cells are strongly suggested as a origin of tumor cell of CCSK (Hass et al. 1984; Yun, 1993), which would explain the ability of CCSK to exhibit a wide range of histologic patterns. Congenital mesoblastic nephroma (CMN) is the most common renal neoplasm in the first 3 months of life (Boland, 1973; Howell et al. 1982). It is composed of interlacing bundles of plump to spindle shaped fibroblasts and myofibroblasts with eosinophilic cytoplasm and round to oval nuclei (Boland, 1973; Pettinato et al. 1989). The term, atypical mesoblastic nephroma (AMN), have been proposed for a potentially aggressive CMN showing high cellularity and mitosis, necrosis and hemorrhage (Joshi et al. 1986). However, other have observed no correlation between these features and clinical behavior (Pettinato et al. 1989). The histogenesis of CMN remains controversial (Boland, 1973) but the possibility of originating from secondary mesenchyme of mature mesoblastic derivatives is highly suggested (Wigger, 1975). In relation to CMN and AMN, early committed stromagenic cells can explain the histogenetic correlation with CCSK. Some authors proposed that ‘CCSK may be originated by malignant transformation from CMN (Beckwith
and Yokomori, 1982; Hass et al. 1984) and CMN and CCSK represent both ends of the spectrum of mesenchymal renal tumors (Joshi et al. 1986). A speculative relationship between CMN and CCSK can be regarded then as an unique tumor with potential to differentiate into the stromal cell lineage showing varying degrees of differentiation in the spectrum of CMN, AMN and CCSK (Fig 3).

In flow cytometric DNA analysis, all cases represented diploidy or near-diploidy. These findings agreed with previous reports (Schmidt et al. 1986; Kumar et al. 1989) and thought to be different from those of Wilms' tumor with unfavorable histology. Most of Wilms' tumor reveals diploid DNA index but Wilms' tumor with unfavorable histology tends to be aneuploid DNA pattern with high DNA index (Schmidt et al. 1986; Kumar et al. 1989; Jung et al. 1991). Therefore, in differential diagnosis between CCSK and Wilms' tumor with predominantly monomorphic and unfavorable histology, DNA analysis appears to play a role in some extent.

In conclusion, CCSK is a separate entity with characteristic clinicopathologic, immunohistochemical and flow cytometric findings from Wilms' tumor which might reflect different histogenesis of these two tumors. But its histogenesis has not been proven conclusively. Further studies on histogenesis of CCSK in conjunction with CMN are required.

REFERENCE

Beckwith JB, Yokomori K: Clear cell sarcoma of kidney: Is it derived from mesoblastic nephroma (abstract). Presented at the Fall Meeting of the Pediatric Pathology Club, Vancouver, BC. Canada. October 6-8, 1982

Joshi VV, Kasznica J, Walters TR: Atypical meso-
Clear Cell Sarcoma of the Kidney

