Ossifying Fibroma

Soo Bong Hahn, Eung Shick Kang, Jun Seop Jahng
Byeong Mun Park and Joon Cheol Choi

Our experience includes seven cases of ossifying fibroma. The condition also appears in the literature under diagnostic names such as congenital fibrous dysplasia, congenital osteitis fibrosa, congenital fibrous defect of the tibia, and osteofibrous dysplasia of the tibia and fibula. The lesions develop in childhood and are located in the diaphysis of the tibia, or fibula.

Of seven patients, we performed wide excision with free vascularized fibular graft in five cases, wide resection of the distal one-third of the fibula in one case, and curettage and bone graft in one case. Two of the patients who had wide excision with free vascularized fibular graft had recurrence. One case of recurrence occurred where incomplete wide excision with free-vascularized fibular graft was performed because the lesion was too close to the distal epiphysis of the tibia. One of the patients who had curettage and bone graft also had recurrence. It was concluded that children who have an ossifying fibroma requiring surgery can safely be treated with wide excision with or without free-vascularized fibular graft.

Key Word: Ossifying fibroma

Ossifying fibroma is not a well-recognized entity. It usually develops in the maxilla and mandible, and only rarely affects long bones. If the lesion is located in the long bones, it usually affects the tibia or fibula (Schonecker et al. 1982).

Ossifying fibroma seldom has even a moderate tendency to progress during childhood, but it recures frequently after curettage or subperiosteal resection. Any progression of the lesion comes to an end after puberty. Thus, surgery should be delayed as long as possible. However, if the lesion is rapidly progressive, or if a patient has a repeated fracture, it would be necessary to resort to wide extraperiosteal resection (Campbell and Thomas 1982).

Our report includes a review of 7 cases. Twenty eight months was the average long-term followup in these cases.

MATERIALS AND METHODS

Seven patients were treated between October 1979 and November 1988 at the Yonsei University College of Medicine. Six of the patients were less than ten years old and one patient was thirteen years old. There were five male and two female patients. Six of the lesions occurred in the tibia and one was in the fibula. Mild pain, limping gait, bony enlargement and bowing deformity were the presenting symptoms (Table 1). All patients had extensive lesion.

Subperiosteal curettage and autogenous bone graft was the initial treatment in one of the patients. Of the other six patients, wide excision with free vascularized fibular graft was done in five patients, and wide resection of the distal one-third of the fibula was done in one patient (Table 1).

The patients who had excision with free vascularized fibular graft were immobilized with a long-leg cast. Full-weight bearing was permitted 15 months after operation.
<table>
<thead>
<tr>
<th>Case</th>
<th>Age (Yrs)</th>
<th>Sex</th>
<th>Data</th>
<th>Complaint</th>
<th>Bone involved</th>
<th>Initial operation</th>
<th>Recurrence</th>
<th>Subsequent operation</th>
<th>Age (Yrs)</th>
<th>Last follow-up Date remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>M</td>
<td>1978</td>
<td>Pathologic Fracture</td>
<td>Tibia</td>
<td>Curettage & Bone graft</td>
<td>2 Times</td>
<td>Curettage & Bone graft</td>
<td>7, 8</td>
<td>Lost</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>M</td>
<td>1985</td>
<td>Painful Swelling</td>
<td>Tibia</td>
<td>Wide excision & F.V.F.G.*</td>
<td>NO</td>
<td>-</td>
<td>-</td>
<td>1987 Good Healing</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>M</td>
<td>1986</td>
<td>Palpable Mass</td>
<td>Fibula</td>
<td>Wide resection</td>
<td>NO</td>
<td>-</td>
<td>-</td>
<td>1988 Good Recurrence</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>M</td>
<td>1986</td>
<td>Anterior Bowing</td>
<td>Tibia</td>
<td>Wide excision & F.V.F.G.*</td>
<td>NO</td>
<td>-</td>
<td>-</td>
<td>1989 Good Healing</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>M</td>
<td>1986</td>
<td>Anterolat Bowing</td>
<td>Tibia</td>
<td>Wide excision & F.V.F.G.*</td>
<td>3 times</td>
<td>Curettage & Bone graft</td>
<td>7, 8, 9</td>
<td>1989 Good Healing</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>F</td>
<td>1988</td>
<td>Limping Gait</td>
<td>Tibia</td>
<td>Wide excision</td>
<td>NO</td>
<td>-</td>
<td>-</td>
<td>1988 Good Healing</td>
</tr>
</tbody>
</table>

* Free Vascularized Fibular Graft

The patient who had curettage and autogenous bone graft had two recurrences. Subsequent curettage and bone graft were performed. Follow-up was not possible three years after the initial operation. The patient with a fibular lesion had wide excision and bone graft. One case of recurrence occurred where free vascularized fibular graft, two patients had wide excision where incomplete wide excision of the distal part of the fibula. Recurrence occurred where complete wide excision of the distal part of the fibula, two patients had wide excision where incomplete wide excision of the distal part of the fibula. Recurrence occurred where complete wide excision of the distal part of the fibula, two patients had wide excision where incomplete wide excision of the distal part of the fibula. Recurrence occurred where complete wide excision of the distal part of the fibula, two patients had wide excision where incomplete wide excision of the distal part of the fibula.
Ossifying Fibroma

Fig. 1-A. Initial radiograph shows the extensive osteolytic lesion and anterior bowing on the left tibia.

Fig. 1-B. Radiographs after wide excision and free-vascularized fibular graft.

Fig. 1-C. Photomicrograph of histologic section of case 1 shows the bony spicules which contain well-developed osteocytes and are rimmed by osteoblasts (H-E, × 200).
Fig. 1-D. Eleven months after operation, radiographs show a fracture line in the grafted fibula after slip-down injury.

Fig. 1-E. Five months after fracture, radiographs show the complete union of the fracture.

Fig. 1-F. Thirty-three months after operation, radiographs show the complete union of the grafted bone and hypertrophy of the grafted fibula. There was no evidence of recurrence.

Case 2.

This six-year-old boy was seen on December 20, 1986 with an anterolateral bowing deformity of the left tibia since birth. The patient had been treated with curettage and allogenic bone graft twice at another hospital. Radiographs revealed an extensive osteolytic lesion on the proximal and distal portion of the left tibia. Anterolateral bowing is also present. There was also a pathologic fracture on the distal portion of the tibia (Fig. 2-A). On December 31, 1986 the patient underwent an incomplete wide excision with free-vascularized fibular graft because the lesion was too close to the distal epiphysis of the tibia (Fig. 2-B). A gross specimen showed that the outer surface was smooth and grayish brown, and an ill-defined, graphish white firm mass involved the intramedullary space and cortex. The histological appearance was similar to that of the previously described lesion (Fig. 2-C). In December 1987, the patient showed a cystic recurrence in the distal portion of the tibia and curettage and an autogenic bone graft was performed. In September 1988, again cystic changes occurred in the proximal and distal portion of the left tibia. The patient un-
Ossifying Fibroma

Fig. 2-A. Initial radiographs show the extensive osteolytic lesion on the proximal and distal portion and anterolateral bowing of the left tibia.

Fig. 2-B. Radiographs after wide excision and free-vascularized fibular graft.

Fig. 2-C. Photomicrograph of histologic section of case 2 shows the randomly dispersed mature bone trabeculas which are present within dense cellular fibrous tissue (H-E, × 200).
Fig. 2-D. Thirty nine months after operation, the recur-red osteolytic lesion was noticed on the proximal and distal portion of the left tibia.

Fig. 3-A. Initial radiographs show the extensive osteolytic lesion and cortical thinning and bulging on the left tibia.

Fig. 2-E. Radiographs after curettage and allogenic bone graft.

Fig. 3-B. Radiographs after wide curettage and free-vascularized fibular graft.
derwent curettage and autoiliac bone graft. In May 1989, the lesion recurred once again on the proximal and distal portion of the left tibia. Curettage and allogenic bone graft were once again performed (Fig. 2-D, Fig. 2-E). In this patient, we could not perform complete wide excision because the lesion was too close to the distal epiphysis of the tibia.

Case 3.

A six-year-old boy was seen on March 8, 1985 with a one year history of painful swelling in the distal part of the left leg. Roentgenograms of the left tibia demonstrated an extensive osteolytic lesion and cortical thinning and bulging (Fig. 3-A). On March 20, 1985, a wide excision (14.5 cm) with free-vascularized fibular graft was performed (Fig. 3-B). Histological examination of the lesion revealed spicules of bone with a fibrous stroma. The bony spicules were rimmed by osteoblasts (Fig. 3-C). Seventeen months after this operation, there was no roentgenographic evidence of tumor recurrence (Fig. 3-D).

Fig. 3-C. Photomicrograph of histologic section of case 3 shows the occasional woven bone and osteoblasts rimming (H-E, × 200).

Fig. 3-D. Seventeen months after operation, radiographs show the complete union of the grafted bone and hypertrophy of the grafted fibula. There was no evidence of recurrence.
Soo Bong Hahn et al.

DISCUSSION

Ossifying fibroma was reported in 1921 by Franhengeheim, who named the entity "congenital osteitis fibrosa". Aside from congenital fibrous dysplasia, the terms congenital fibrous dysplasia and congenital fibrous defect of the tibia have been used. In 1981, Campanacci and Lauts reported thirty-five patients with "ossified fibroblastic dysplasia of the tibia and fibula.

In 1966, Kempson reported two patients with ossifying fibroma of the long bones who had distinct clinical, histological and ultrastructural differences from monostotic fibrous dysplasia. Campanacci and Lauts proposed the term osteogibrous dysplasia of the tibia and fibula for the entity because it was present exclusively in those bones. In our study, the lesion occurred in the tibia and fibula.

The pathogenesis of ossifying fibroma is not known. Kempson reported that the electron micrographic finding indicated both bone deposition and resorption occurring on the same spicules of bone. In was postulated that ossifying fibroma resulted from excessive resorption of bone with fibrous repair of the defect. The initial resorption might be secondary to defective bone and probably represent attempts at healing. Whatever the basic defect, the role of the periosteum seemed significant. The periosteum could be stimulation production of abnormal osteoblasts, or an excessive numbers of osteoclasts. Therefore, if surgery is indicated, wide excision involving the normal periosteum is mandatory (Campanacci and Lauts 1981).

The symptoms almost always appear in the first decade of life, always before puberty. In our study, six patients were in the first decade and one patient was a thirteen-year-old. The lesion almost always occur in the tibia or fibula, but occasionally in the ipsilateral tibia and fibula or bilaterally. Also it has been reported in the humerus of one patient (Schitter 1958). In this study, the lesion occurred in the tibia of six patients and in the fibula of one patient.

The most frequent presenting symptom is enlargement of the tibia, usually associated with slight or moderate anterior or anterolateral bowing. Pathologic fracture or pseudoarthrosis of the tibia or fibula rarely occurs (Campanacci and Lauts 1981). In this study, enlargement or mass of the tibia was observed in three patients, anterior or anterolateral bowing in two patients, limping gait in one patient, and pathologic fracture in two patients.

Radiographically, eccentric intracortical osteolysis is seen, and the external surface of the cortex may be moderately or severely expanded. The osteolysis is clearly marginated by a band of sclerosis, and frequently there is narrowing of the medullary canal. Anterior or anterolateral bowing of the tibia is regularly associated with more extensive lesions. These radiographic features are so characteristic that diagnosis can be made, with confidence, from the radiographs alone, before or without histological confirmation. However, there is no radiographic criterion to predict the course of the lesion (Campanacci and Lauts 1981).

Histological examination shows two fundamental characteristics. First, benign fibrous tissue with numerous irregularly shaped trabeculae of woven bone which are often rimmed by osteoblasts is seen. Second, a so-called zonal architecture has been described with a transition from sparse, immature trabeculae of woven bone in the center of the lesion to more mature trabeculae of lamellar bone near the cortex.

Adenomatoma, monostotic fibrous dysplasia and non-ossifying fibroma can be differentiated from ossifying fibroma clinically, radiographically and by the histological pattern. Adamantinoma seldom occurs in the first decade and a typical epitheloid component can be found in histological examination. Monostotic fibrous dysplasia usually involves the femur and the rib. It is usually discovered after the patient has reached the age of ten years. Its radiographic feature is usually intramedullary and the bowing of the tibia is not seen. Histologically, fibrous dysplasia has more cellular and less mature fibrous tissue, and usually shows only in woven bone, not a so-called zonal architecture. Non-ossifying fibroma usually involves the metaphysis, and histologically, there is no new bone formation except in its reparative phase (Marbel 1978; Park et al. 1978).

Ossifying fibroma usually progresses until ten years of age and recurs frequently after curettage or subperiosteal resection, but occasionally regresses spontaneously after puberty. Therefore, surgery should be delayed as long as possible. But if the lesion is rapidly progressive, if a patient has a repeated fracture, or when surgery is absolutely necessary to maintain the integrity of the involved extremity, it would be necessary to eradicate the lesion completely (Geoghegan et al. 1977). In this study, we performed wide excision with free-vascularized fibular graft in five patients and wide resection of the distal
Ossifying Fibroma

one-third of the fibula in one patient. Two patients had recurrence. One case of recurrence occurred where incomplete wide excision with free vascularized fibular graft was performed because the lesion was too close to the distal epiphysis of the tibia.

REFERENCES

Number 4

355