Effects of Vanadate on Cellular Ca\(^{2+}\) Movements in Guinea Pig Papillary Muscles

Chang Kook Suh, So Ra Park, Duck Sun Ahn and Kwang Sei Paik

The effects of vanadate on cellular Ca\(^{2+}\) movements across the sarcolemma of cardiac muscle cells were investigated by measuring the intracellular and extracellular Ca\(^{2+}\) activities of guinea pig papillary muscle with Ca\(^{2+}\)-selective electrodes. During the rest period following a steady-state of 2 contractions per second, the extracellular Ca\(^{2+}\) concentration was increased over the basal level within a minute. During the rest period, Ca\(^{2+}\) was transported across the sarcolemma into the extracellular space. Vanadate decreased the change in extracellular Ca\(^{2+}\) concentration during the rest period, implying that the Ca\(^{2+}\) efflux across the sarcolemma was decreased by vanadate. Vanadate increased intracellular Ca\(^{2+}\) activities significantly (from 1.9 X 10\(^{-7}\) M to 10\(^{-4}\) M) resulting in an increase in resting tension. These results suggest that vanadate decreases Ca\(^{2+}\) efflux from the cells into the extracellular space by blocking Ca\(^{2+}\) transport across the sarcolemma, possibly blocking the Na\(^{+}\)–Ca\(^{2+}\) exchange transport.

Key Words: Guinea pig papillary muscle, Na\(^{+}\)–Ca\(^{2+}\) exchange transport, Ca\(^{2+}\)-selective electrodes, intracellular Ca\(^{2+}\) activity, vanadate

It has been known that Na\(^{+}\) has an important role in cardiac muscle contractility (Sulakhe and St. Louis 1980; Mullins 1981). In 1968 Reuter and Seitz reported that Ca\(^{2+}\) efflux from the guinea pig auricle is not directly dependent upon metabolism but upon the ratio of Ca\(^{2+}\) and Na\(^{+}\) in the bathing medium (Reuter and Seitz 1968; Reuter 1974). Ca\(^{2+}\) is moved across the membrane coupled with a Na\(^{+}\) influx, the driving force of which is maintained through the active transport of Na\(^{+}\) (Na\(^{+}\)–Ca\(^{2+}\) exchange process).

The contribution of the Na\(^{+}\)–Ca\(^{2+}\) exchange process to the maintenance of a low Ca\(^{2+}\) concentration in the sarcoplasm (and a relaxed state of the contractile system) was shown by producing a net release of Ca\(^{2+}\) from the sarcoplasmic reticulum (SR) by caffeine (Jundt et al. 1975). The rate of net efflux of Ca\(^{2+}\) from the cell, in the presence of caffeine, depends upon the Na\(^{+}\) concentration of the bathing medium. Caffeine-contracture in a Na\(^{+}\)-free solution relaxes upon addition of Na\(^{+}\) to the bathing medium: this is correlated with the increase in net efflux of Ca\(^{2+}\). However, the relaxation is rather slow requiring many minutes and it is more likely that a Na\(^{+}\)–Ca\(^{2+}\) exchange is involved in the maintenance of total intracellular Ca\(^{2+}\) at an appropriate level rather than being important in the rapid regulation of sarcoplasmic Ca\(^{2+}\) during a normal twitch.

In attempts to investigate the cellular movements of Ca\(^{2+}\), the extracellular Ca\(^{2+}\) concentration of guinea pig atrium was measured during rest periods (Suh 1983; Suh and Sleator 1982, 1983). The extracellular Ca\(^{2+}\) concentration was decreased for a few seconds before it started to increase during the rest period (Suh and Sleator 1982). A low concentration of ryanodine (5 X 10\(^{-6}\) M), which blocked the post-rest contraction, enhanced the increase in extracellular Ca\(^{2+}\) concentration. Changes in extracellular Ca\(^{2+}\) concentration during rest periods were dependent upon the extracellular Na\(^{+}\) concentration (Suh and Sleator 1983). It was suggested that the amount of Ca\(^{2+}\) leaving the cell decreases for a few seconds as Ca\(^{2+}\) is retained within intracellular stores and then the cell starts to lose Ca\(^{2+}\) across the sarcolemmal membrane into the extracellular space via a Na\(^{+}\)-dependent process, a Na\(^{+}\)-Ca\(^{2+}\) exchange (Suh 1983). The involvement of a Na\(^{+}\)-Ca\(^{2+}\) exchange in the transsarcolemmal Ca\(^{2+}\)
transport can be tested by employing pharmacological blocking agents. However, no agent with this single function is known at present.

Vanadate is known to have a negative inotropic effect on guinea pig atria (Borchard et al. 1979; Grupp et al. 1979; Takeda et al. 1982) and a positive inotropic effect on ventricular muscle and other cardiac tissues (Hackbarth et al. 1978; Borchard et al. 1979; Grupp et al. 1979; Takeda et al. 1980). The mechanism of these effects is not yet understood. However, interference with the Ca2+ efflux by blocking of the Na+-Ca2+ exchange transport would be one possible mode for vanadate's positive inotropic action (Suh and Sleator 1983). Recently, the effects of vanadate on Ca2+ fluxes across the sarcolemma of guinea pig cardiac tissues were studied (Park 1986). Ca2+ efflux rates from intracellular Ca2+ pools of guinea pig left atria and right ventricular tissue were significantly decreased by vanadate and the pool sizes of both tissues were significantly increased by vanadate. Ca2+ influx into the left atria was decreased by vanadate, while Ca2+ influx into the right ventricular tissue was not affected by vanadate. These data imply that the positive inotropic effect of vanadate on ventricular muscle is due to a reduced efflux of activator Ca2+ and that a reduced influx of Ca2+ is responsible for its negative inotropic effect on atrial muscle.

Thus, in this study, the effects of vanadate on Ca2+ movements across the sarcolemma of ventricular tissue were investigated by measuring the intracellular Ca2+ activities and the changes in Ca2+ concentration in the extracellular space of cardiac muscle preparations during the rest period with Ca2+-selective electrodes. Transmembrane Ca2+ movements were correlated with the positive inotropic effect of vanadate on ventricular tissue.

METHODS

Guinea pigs of either sex ranging in size from 200 to 500 grams were sacrificed with a blow to the head. The heart was rapidly excised and placed in oxygenated (95% O\textsubscript{2}, 5% CO\textsubscript{2}) modified Krebs-Henseleit (KH) solution. Right ventricular papillary muscles were dissected free of other tissue, the base and the apex were tied with surgical silk threads, and they were transferred to a recording chamber which was continuously perfused with the oxygenated KH solution. Tension was monitored by a Model 400A Force Transducer System (Cambridge Technology, Inc.) and displayed on a Tektronix 7313 Oscilloscope and on a Gould Brush 220 recorder along with the signal from the differential electrometer for the Ca2+-selective electrode (CSE). Stimulating current provided by a Grass S11 stimulator was passed through a pair of platinum wires. The temperature in the recording chamber was maintained at 32.5 ± 0.2°C. The KH solution had the following composition in millimoles per liter (mM): NaCl 119; KCl 4.8; KH\textsubscript{2}PO\textsubscript{4} 1.2; NaHCO\textsubscript{3} 24.8; MgSO\textsubscript{4}·7H\textsubscript{2}O 1.2; CaCl\textsubscript{2} 2.5; dextrose 10.

Transmembrane action potentials were recorded between 3 M KCl-3% agar bridge in the bath and a standard microelectrode (RE) filled with 3M KCl. The microelectrodes, pulled from microfiber capillary tings (WPI Inc.), had a typical resistance in the range of 5-20 megohms and tip diameters of less than 0.5 microns.

The resin used for the Ca2+-selective electrodes was provided by Professor W. Simon. The mixture was that of Oehme et al. (Oehme et al. 1976). Polyvinylchloride (PVC), approximately 10% by weight, was added to the mixture for the better stability of CSE.

Glass microelectrodes were pulled from borosilicate glass capillaries (WPI 1B200F6) which had been cleaned with alcohol, boiled in distilled water, and dried completely. Glass pipettes were inserted, tip upward, into holes drilled into a small Teflon plate. The Teflon plate with the pipettes was placed on the top of a bottle containing a small drop of pure dichloro-dimethylsilane and then placed in an oven at 200°C. The silane vapor was allowed to react with the glass for 30 minutes. The silanized pipettes were filled with a 100 mM CaCl\textsubscript{2} reference solution. A column of exchanger resin was forced into the electrodes by means of a partial vacuum. The electrode was observed to be filled with resin to the tip length up to several 100 microns.

The e.m.f. from the CSE was measured with an electrometer (Analog Devices 311) or AD515 operational amplifier, Norwood, MA U.S.A.), and membrane potential measured by the RE was electronically subtracted from the e.m.f. measured with the CSE. Ca2+-selective electrodes were normally checked before and after the experiments.

Generally, the performance of the CSE is quite variable. Each electrode was tested for response and left in the KH solution for at least one hour before being used. The Ca2+-standard solutions containing pCa 2, 3, and 4 were made by dilution from a 100 mM CaCl\textsubscript{2} solution. The solutions for pCa 5, 6, 7, and 8 were made from a Ca2+ buffer containing EGTA (Suh 1983). Figure 1 shows the calibration curves for one electrode. Without a major monovalent cation (Na+), a calibration plot virtually gives a Nernstian response down to pCa 7 and further useful responses down to pCa 8. The major monovalent cation starts to in-
Effects of Vanadate on Cellular Ca²⁺ Movements in Guinea Pig Papillary Muscles

Fig. 1. Calibration curves for the Ca²⁺-selective electrode.
A. Interference from Na⁺ in the KH solution appear at pCa 6.
B. A chart-recording of the calibration in the KH solution. Horizontal scale = 10 seconds. Vertical scale = 50 mV.

...terfere at pCa 6, and the KH solution has a similar interference. For intracellular recordings Ca²⁺-standard solutions were made with an ionic background of 100 mM KCl instead of the KH solution. The Ca²⁺ activity coefficient of 0.32 was used to calculate Ca²⁺ activity in the solution (Lee 1981).

RESULTS

Vanadate's effects on contractility of papillary muscle

The steady-state contractions of papillary muscle were measured at various stimulation frequencies (Fig. 2). After the tissue was equilibrated for 1 hour at 1 contraction per second (cps), steady-state contractions of stimulation frequencies, in the order of 1, 2, 0.1, 0.2, 0.5, and 1 cps, were measured. Vanadate (200 μM) was then added to the perfusion solution while the tissue was stimulated at a frequency of 1 cps. When a new steady state of 1 cps was reached, steady-state contractions were measured with the same sequence of stimulation frequencies as that of the control. While vanadate increased contractile strength at all frequencies, the increase in contractility was much larger at low stimulation frequencies.

The increase in contractile strength was significant when vanadate's effects on contractions and action potentials were measured at one of the low stimulation frequencies (0.2 cps). Fig. 3 shows that the resting and twitch tensions were significantly increased when the tissue was perfused with a vanadate-containing solution (200 μM) for 10 minutes. The increased contractile strength attributed to vanadate was diminished after the tissue was perfused with the normal KH solution. However, there were no significant changes in the action potential configurations.

Changes in extracellular Ca²⁺ concentration ([Ca²⁺]ᵣ) during the rest period

Rest periods were given after a steady-state of 2 cps was reached, and the extracellular Ca²⁺ concentrations during the rest periods were measured (Fig. 4). When the stimulus was stopped and a rest period was given, [Ca²⁺]ᵣ started to increase and reached a

Number 1
Fig. 3. Effects of vanadate on contractility and action potential.
Heart tissue was stimulated at 0.2 cps. When the tissue was treated with vanadate (200 μM), there was an increase in resting tension and steady-state contractions. There was no significant change in action potential configurations. Arrows indicate the times when a series of polaroid pictures were taken. The sequence is as follows; control, 5 minutes, 10 minutes after vanadate's treatment, recovery. Horizontal scale = 200 msec. Vertical scale = 50 mV.

Fig. 4. Changes in extracellular Ca²⁺ concentration during rest period.
A, KH solution; B, vanadate (200 μM) treated; C, recovery; D, ryanodine (5×10⁻⁴ M). Horizontal scale = 10 seconds. Vertical scale = 10 mg for tension (upper trace); 5.0 mV for E_m (lower trace).

maximum level in approximately 30 seconds as shown in Fig. 4A (about 1.7 mV, which is equivalent to an extracellular Ca²⁺ concentration change of 330 μM). As the rest period lasted longer, [Ca²⁺]ᵢ slowly decreased to the basal level. When the tissue was treated with vanadate (200 μM), the steady-state contraction of 2 cps was increased with a slight increase in resting tension. The change in extracellular Ca²⁺ concentration during the rest period was much smaller (250 μM in Fig. 4B) with vanadate. When vanadate was removed from the perfusion solution, the steady-state contractions were decreased to the level of the control prior to the vanadate treatment, and the magnitude of the change in extracellular Ca²⁺ was again increased (340 μM in Fig. 4C). When the tissue was treated with ryanodine (5×10⁻⁴ M), the increase in [Ca²⁺]ᵢ was much greater (about 400 μM in Fig. 4D). (This ryanodine-enhanced Ca²⁺ efflux was used in order to produce maximum responses when Ca²⁺ efflux from the tissue was not clearly detected.)

After the papillary muscle was treated with ryanodine (5×10⁻⁴ M), the effects of vanadate (200
Effects of Vanadate on Cellular Ca$^{2+}$ Movements in Guinea Pig Papillary Muscles

Fig. 5. Vanadate’s effect on extracellular Ca$^{2+}$ concentration of ryanodine-treated papillary muscle. Heart tissue was pretreated with ryanodine (5×10^{-8} M). A, ryanodine; B, vanadate; C, recovery. Upper records in each pannel are tensions and lower records are E_{Ca}. (See the legend in Fig. 4 for other explanation.)

Fig. 6. Measurements of intracellular Ca$^{2+}$ activities. Heart tissue was stimulated at 0.5 cps. Transmembrane potentials (upper trace) and intracellular Ca$^{2+}$ activities (lower trace) were measured simultaneously. Horizontal scale = 400 msec. Vertical scale = 50 mV.

μM) on [Ca$^{2+}$]$^\text{c}$ during rest periods were measured (Fig. 5). The change in extracellular Ca$^{2+}$ concentration during rest period, which was enhanced by ryanodine, was decreased by vanadate (420 μM in Fig. 5B vs. 510 μM in Fig. 5A and 560 μM in Fig. 5C). The rate of change in [Ca$^{2+}$]$^\text{c}$ was also decreased by vanadate (1.0 mV in 5 seconds in Fig. 5B vs. 1.5 mV in 5 seconds in Fig. 5A) and returned to the faster rate when vanadate was removed from the perfusion solution (1.5 mV in 5 seconds in Fig. 5C).

Changes in intracellular Ca$^{2+}$ activity

Intracellular Ca$^{2+}$ activities were measured with CSE and RE impaling closely neighboring cells. The measured values of intracellular Ca$^{2+}$ activities were scattered in a range of 1.8×10^{-8} to 5.1×10^{-7} M and had an average value of 1.9×10^{-7} M with S.E. of 3.1×10^{-8} M (n=29, out of four tissues).

Figure 6 shows one of the intracellular Ca$^{2+}$ recordings along with the transmembrane potential. When
the tissue was stimulated at a frequency of 0.5 cps, the resting membrane potential (Em) was about –80 mV and Ec was about 105 mV negative to the value Ec of the bathing solution. This value of Ec, was calibrated to intracellular Ca2+ activity of 3.2x10⁻⁷ M. When the tissue was stimulated at a frequency of 0.2 cps an intracellular Ca2+ was about 1.8x10⁻⁷ M, which is slightly less than that at 0.5 cps. When the same tissue was treated with vanadate (200 μM) for 10 minutes, intracellular Ca2+ activities were increased by 0.5 unit of pCa to 9.0x10⁻⁷ M at both frequencies.

Fig. 7 shows a recording from other tissue with spontaneous beating. Vanadate increased intracellular Ca2+ activities from 7.2x10⁻⁸ M to 1.6x10⁻⁸ M with an accompanying increase in resting tension of about 4 mg. When the tissue was perfused with normal KH solution intracellular Ca2+ activities were returned to the values of 3.8x10⁻⁸ M and resting tension was also decreased.

DISCUSSION

Since it was proposed that vanadate could act as an “ideal endogenous regulator” of Na+, K+-ATPase activity (Cantley et al. 1979), numerous studies on its physiological effects have been reported (for a review see Nechay 1984). Vanadate is known to have a negative inotropic effect on guinea pig atria with greatly shortened action potentials (Takeda et al. 1980) and a positive inotropic effect on the ventricular muscles of the guinea pig and other experimental animals (Hackbarth et al. 1978; Borchard et al. 1979; Grupp et al. 1979). Vanadate’s other effects, which occur at high concentration, such as stimulating adenylate cyclase and inhibiting Na+, K+-ATPase, have been reported as possible mechanisms for its cardiac inotropicism (Borchard et al. 1979; Krawietz et al. 1979). However, the mechanism of these effects is not yet well understood.

During the plateau phase of the action potential, a small but significant amount of Ca2+ enters the myocardial cells from the extracellular space as a slow inward current (for a review see Reuter 1979). In mammalian cardiac muscle this Ca2+ is not immediately available for contraction, but can replenish or augment the amount of Ca2+ in intracellular stores (for a review see Winegrad 1979). Since Ca2+ enters the cardiac cell during each action potential, to attain a steady-state
there must be a mechanism to get Ca\(^{2+}\) out of the cell. Although a Ca\(^{2+}\)-activated ATPase in SR vesicles has been shown to be associated with Ca\(^{2+}\) pump, this has not been clearly identified in cardiac sarcolemma. Thus the Ca\(^{2+}\) efflux across the sarcolemma is believed to be accomplished by means of a Na\(^{+}\)-Ca\(^{2+}\) exchange process (Mullins 1981). Interference of these two Ca\(^{2+}\) movements, i.e. Ca\(^{2+}\) influx via a slow inward current and Ca\(^{2+}\) efflux via a Na\(^{+}\)-Ca\(^{2+}\) exchange process, would cause changes in the sarcoplasmic Ca\(^{2+}\) content and consequently changes in contractility (Mullins 1981; Fleckenstein 1983).

Recently, the development of Ca\(^{2+}\)-selective electrodes has made it possible to continuously measure the Ca\(^{2+}\) flux across the sarcolemma (Suh 1982; Bers and MacLeod 1986). Measurements of extracellular Ca\(^{2+}\) during a rest period reflect the movement of Ca\(^{2+}\) across the sarcolemmal membrane. As the stimulation ceases the cell, while retaining some Ca\(^{2+}\) for a post rest contraction, begins to lose Ca\(^{2+}\) probably via Na\(^{+}\)-Ca\(^{2+}\) exchange transport and the concentration of extracellular Ca\(^{2+}\) increases. When stimulation is resumed intracellular stores pick up Ca\(^{2+}\), which has crossed the sarcolemma during the action potential. As the cell retains more Ca\(^{2+}\), contractions gradually become stronger and the extracellular Ca\(^{2+}\) concentration decreases (Fig. 5).

Interference with Ca\(^{2+}\) efflux by the blocking of the Na\(^{+}\)-Ca\(^{2+}\) exchange transport would be one possible mode for vanadate’s positive inotropic action (Suh 1983). A decrease in Ca\(^{2+}\) efflux by vanadate would increase intracellular Ca\(^{2+}\) content thus producing a positive inotropic effect.

This theme was examined with guinea pig papillary muscle which shows a positive inotropic (Fig. 2). Vanadate does not seem to increase the Ca\(^{2+}\) influx via a slow inward current as the action potentials were not significantly affected (Fig. 3). Findings from Ca\(^{2+}\) uptake experiments also support the suggestion that Ca\(^{2+}\) influx into ventricular tissue is not affected by vanadate (Park 1986).

Vanadate decreased the extracellular Ca\(^{2+}\) concentration in both untreated (Fig. 4) and ryanodine-pretreated tissue (Fig. 5). This can be interpreted as a consequence of decrease in Ca\(^{2+}\) efflux across the sarcolemma into the extracellular space since there is no reason to believe that vanadate makes faster the diffusion of Ca\(^{2+}\) into the (bulk) bathing solution from the extracellular space (the immediate vicinity of the cells). The decrease in Ca\(^{2+}\) efflux during a rest period attributed to vanadate was also reported in guinea pig atria, resulting in the reappearance of a post-rest contraction which was diminished by ryanodine (Suh 1983).

Measurements of intracellular Ca\(^{2+}\) activity with Ca\(^{2+}\)-selective electrodes encounter technical difficulties (Lee 1981; Thomas 1982). To minimize the artifacts due to the slow response of the electrodes, the tissue was stimulated at low frequencies and the e.m.f. registered between action potentials (to maximize the period when the membrane potential does not change) was measured for analysis. Intracellular Ca\(^{2+}\) activities of guinea pig papillary muscle measured in this study are about 190 nM, and this number is in good agreement with other reported values (Lee 1981). Vanadate significantly increased intracellular Ca\(^{2+}\) activities resulting in an increase in resting tension. The correlation between resting tension and intracellular Ca\(^{2+}\) was not examined in this study, but will be studied in near future.

The results of this study indicate that vanadate decreases the loss of activator Ca\(^{2+}\) from cardiac muscle cells by blocking Ca\(^{2+}\) efflux across the sarcolemma, and consequently results in an increase in intracellular Ca\(^{2+}\) activities for positive inotropism of cardiac muscle tissue. They further suggest that vanadate may be a blocking agent of the Na\(^{+}\)-Ca\(^{2+}\) exchange transport in mammalian cardiac cells.

REFERENCES

Park YS: Effects of vanadate on the calcium flux of cardiac muscle. M.S. thesis Yonsei University College of Medicine, 1986

Suh CK, Sleator WW: Extracellular measurements of Ca** in guinea pig atrium during activity. *Biophysical J* \textbf{37}:122a, 1982

Takeda K, Temma K, Akera T: Inotropic effects of vanadate in isolated rat and guinea-pig heart under conditions which modify calcium pools involved in contractile activation. *J Pharmacol Exp Ther* \textbf{222}:132-139, 1982

Winegrad S: Electromechanical coupling in heart muscle. *In Handbook of Physiology, the cardiovascular system*. Amer Physiol Soc, 1979