Quercetin Inhibits $\alpha 3\beta 4$ Nicotinic Acetylcholine Receptor-Mediated Ion Currents Expressed in Xenopus Oocytes

Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Korea

Quercetin mainly exists in the skin of colored fruits and vegetables as one of flavonoids. Recent studies show that quercetin, like other flavonoids, has diverse pharmacological actions. However, relatively little is known about quercetin effects in the regulations of ligand-gated ion channels. In the previous reports, we have shown that quercetin regulates subsets of homomeric ligand-gated ion channels such as glycine, 5-HT3A and $\alpha 7$ nicotinic acetylcholine receptors. In the present study, we examined quercetin effects on heteromeric neuronal $\alpha 3\beta 4$ nicotinic acetylcholine receptor channel activity expressed in Xenopus oocytes after injection of cRNA encoding bovine neuronal $\alpha 3$ and $\beta 4$ subunits. Treatment with acetylcholine elicited an inward peak current (I_{ACh}) in oocytes expressing $\alpha 3\beta 4$ nicotinic acetylcholine receptor. Co-treatment with quercetin and acetylcholine inhibited I_{ACh} in oocytes expressing $\alpha 3\beta 4$ nicotinic acetylcholine receptors. The inhibition of I_{ACh} by quercetin was reversible and concentration-dependent. The half-inhibitory concentration (IC_{50}) of quercetin was 14.9±0.8 μM in oocytes expressing $\alpha 3\beta 4$ nicotinic acetylcholine receptor. The inhibition of I_{ACh} by quercetin was voltage-independent and non-competitive. These results indicate that quercetin might regulate $\alpha 3\beta 4$ nicotinic acetylcholine receptor and this regulation might be one of the pharmacological actions of quercetin in nervous systems.

Key Words: Flavonoids, Quercetin, $\alpha 3\beta 4$ nicotinic acetylcholine receptor, Xenopus oocyte

INTRODUCTION

Nicotinic acetylcholine receptors are members of the Cys-loop family of ligand-gated ion channels [1]. Currently, sixteen different nicotinic acetylcholine receptor subunits are known [2]. Muscle form of nicotinic acetylcholine receptor consists of $\alpha 1\beta 1\gamma\epsilon$. Activation of muscle form of nicotinic acetylcholine receptor initiates muscle contraction by inducing depolarization of neuromuscular junctions. Neuronal forms of nicotinic acetylcholine receptor consist of α ($\alpha 2-7, \alpha 9, \alpha 10$) and β ($\beta 2-4$) and their activations are mainly involved in rapid synaptic transmissions in central and peripheral nervous systems [2]. Neuronal nicotinic acetylcholine receptor contain $\alpha 2-6$ subunits that are usually expressed as heteropentamers in combination with $\beta 2-4$ subunits [3-6]. For example, the $\alpha 3$ and $\beta 4$ subunits can form heteromeric receptors [7]. Although many nicotinic acetylcholine receptor subunits are expressed in the central and peripheral nervous systems, the distributions of $\alpha 3\beta 4$ nicotinic acetylcholine receptor are mainly restricted to several tissues such as adrenal chromaffin cells [8,9]. The $\alpha 3\beta 4$ nicotinic acetylcholine receptors play an important role for release of catecholamine releases [10]. Skin of colored fruits and vegetables contains a variety of flavonoids and quercetin is one of representative flavonoids (Fig. 1A) [11]. Quercetin exhibits multiple pharmacological activities in nervous and non-nervous systems [12-16]. However, the underlying cellular mechanisms of quercetin actions are relatively unknown, especially with regards to possible regulation of receptors or ionic channels involved in synaptic transmissions. Recently, we demonstrated that quercetin differentially regulates subsets of nicotinic acetylcholine receptor such as homomeric glycine, 5-HT3A, $\alpha 7$ and $\alpha 9\alpha 10$ nicotinic acetylcholine receptors [17-20]. In the present study, we examined the effects of quercetin on heteromeric $\alpha 3\beta 4$ nicotinic acetylcholine receptor channel activity and report here that quercetin inhibits heteromeric $\alpha 3\beta 4$ nicotine acetylcholine receptor channel activity with voltage-independent and non-competitive manner. These results indicate that quercetin might play a role for the regulation of nicotinic acetylcholine receptor channel activities.

*These authors contributed equally to this work.

Received December 27, 2010, Revised January 17, 2011, Accepted January 18, 2011

Corresponding to: Seung-Yeol Nah, Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, 1, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea. (Tel) 82-2-450-4154, (Fax) 82-2-450-3037, (E-mail) synah@konkuk.ac.kr

ABBREVIATIONS: 5-HT3A, 5-hydroxytryptamine 3A; ACh, acetylcholine; Que, quercetin.
Materials

Bovine α3 and β4 nicotine acetylcholine receptor subunit cDNAs were kindly provided by Dr. S. Sala (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Spain). Quercetin (Fig. 1A) and all other reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA).

Preparation of Xenopus laevis oocytes and microinjection

X. laevis frogs were purchased from Xenopus I (Ann Arbor, MI, USA). Animal care and handling were in accordance with the highest standards of Konkuk university guidelines. To isolate oocytes, frogs were anesthetized with 3-amino benzolic acid ethyl ester, and the ovarian follicles were removed. The oocytes were separated with collagenase followed by agitation for 2 h in a Ca2+-free medium containing 82.5 mM NaCl, 2 mM KCl, 1 mM MgCl2, 5 mM HEPES, 2.5 mM sodium pyruvate, 100 units/ml penicillin, and 100 μg/ml streptomycin. Stage V-VI oocytes were collected and stored in a ND96 medium (96 mM NaCl, 2 mM KCl, 1 mM MgCl2, 5 mM HEPES, pH 7.5) supplemented with 50 μg/ml gentamicin. The solution containing the oocytes was maintained at 18°C with continuous gentle shaking and was replaced daily. Electrophysiological experiments were performed three to five days after oocyte isolation. For α3β4 nicotine acetylcholine receptor experiments, α3 and β4 nicotine acetylcholine receptor subunit-encoding cDNAs (40 nl) were co-injected into the animal or vegetal pole of each oocyte 1 day after isolation using a 10-μl microdispenser (VWR Scientific, West Chester, PA, USA) fitted with a tapered glass pipette tip (15–20 μm in diameter) [19].

RESULTS

Effect of quercetin on I_{ACH} in oocytes expressing heteromeric α3β4 nicotinic acetylcholine receptors

The addition of acetylcholine to the bathing solution induced a large inward current in oocytes injected with α3β4 nicotinic acetylcholine receptor, indicating that this nicotinic acetylcholine receptor was functionally expressed in this system (Fig. 1B). Quercetin itself had no effect in oocytes expressing α3β4 nicotinic acetylcholine receptors at a holding potential of ~80 mV (Fig. 1B). But co-treatment with quercetin and acetylcholine inhibited I_{ACH} in oocytes expressing α3β4 nicotinic acetylcholine receptors (Fig. 2A and B, n=9 from three different frogs). The inhibition of I_{ACH} by quercetin in oocytes expressing α3β4 nicotinic acetylcholine receptor was reversible with a negligible desensitization (Fig. 2A). Thus, these results suggest the possibility that quercetin regulates α3β4 nicotinic acetylcholine receptor channel activity, although quercetin itself had no effect on α3β4 nicotinic acetylcholine receptor channel activity.

Data recording

A custom-made Plexiglas net chamber was used for two-electrode voltage-clamp recordings, as previously reported [19]. A single oocyte was constantly superfused with a recording solution (96 mM NaCl, 2 mM KCl, 1.8 mM CaCl2, and 10 mM HEPES, pH 7.5) in the absence or presence of glutamate or quercetin during recording. The microelectrodes were filled with 3 M KCl and had a resistance of 0.2–0.7 MΩ. Two-electrode voltage-clamp recordings were obtained at room temperature using an Oocyte Clamp (OC-725C, Warner Instrument) and were digitised using Digidata 1,200 A (Molecular Devices, Sunnyvale, CA, USA). Stimulation and data acquisition were controlled using pClamp 8 software (Molecular Devices). For most electrophysiological data, the oocytes were clamped at a holding potential of ~80 mV. For current and voltage (I-V) relationship, voltage ramps were applied from −100 to +60 mV for 300-ms. In the different membrane-holding potential experiments, the oocytes were clamped at the indicated holding potentials. Linear leak and capacitance currents were corrected by means of the leak subtraction procedure.

Data analysis

To obtain the concentration-response curve for the effect of quercetin on the inward peak I_{ACH} mediated by the α3β4 nicotinic acetylcholine receptor, the I_{ACH} peak was plotted at different concentrations of quercetin. Origin software (OriginLab Corp., Northampton, MA, USA) was used to fit the plot to the Hill equation: I/I_{max}=1/[1+(IC_{50}/[A])^{nH}], where I_{max} was maximal current obtained from each E_{D50} value of acetylcholine in wild-type receptors, IC_{50} was the concentration of quercetin required to decrease the response by 50%, [A] was the concentration of quercetin, and nH was the Hill coefficient. All values were presented as means±S.E.M. The differences between the means of control and treatment data were determined using the unpaired Student’s t-test. A value of p<0.05 was considered to be statistically significant.
Quercetin Regulates $\alpha 3\beta 4$ Nicotinic Acetylcholine Receptor

Concentration-dependent effect of quercetin on I_{ACb} in oocytes expressing $\alpha 3\beta 4$ nicotinic acetylcholine receptor

Since pre-treatment of quercetin did not induce further inhibition on I_{ACb} in oocytes expressing $\alpha 3\beta 4$ nicotinic acetylcholine receptor compared to co-treatment, in next experiments we examined quercetin effects on I_{ACb} after co-treatment of quercetin with acetylcholine. In concentration-response experiments, co-treatment of quercetin with acetylcholine inhibited I_{ACb} in a concentration-dependent manner in oocytes expressing $\alpha 3\beta 4$ nicotinic acetylcholine receptor (Fig. 2C). The IC50 of I_{ACb} was 14.9±0.8 μM in oocytes expressing $\alpha 3\beta 4$ nicotinic acetylcholine receptors (n=9-12 from three different frogs) (Fig. 2D).

Current-voltage relationship and voltage-independent inhibition in oocytes expressing $\alpha 3\beta 4$ nicotinic acetylcholine receptors by quercetin

As shown in Fig. 3, the current-voltage relationship induced by acetylcholine with voltage steps from −100 to +60 mV showed a slight rectification at positive potentials in oocytes expressing $\alpha 3\beta 4$ nicotinic acetylcholine receptor. The reversal potential of $\alpha 3\beta 4$ nicotinic acetylcholine receptors was $V_r=-11.2\pm2.4$ mV (mean±S.E.M., n=6 from three different frogs). Co-treatment with quercetin and acetylcholine did not modify the reversal potential of $\alpha 3\beta 4$ nicotinic acetylcholine receptor with a reduction of I_{ACb} (n=6 from three different frogs). The inhibitory effect of quercetin on I_{ACb} in oocytes expressing $\alpha 3\beta 4$ nicotinic acetylcholine receptors was independent of the membrane holding potential (Fig. 3B). Thus, quercetin inhibited I_{ACb} by 65.4±4.1, 65.7±1.7, 66.8±5.7, and 65.8±2.8% at −120, −90, −60, and −30 mV membrane holding potential in oocytes expressing $\alpha 3\beta 4$ nicotinic acetylcholine receptor, respectively (Fig. 3B; n=9-12, from three different frogs).

Noncompetitive inhibition of $\alpha 3\beta 4$ nicotinic acetylcholine receptors by quercetin

To study further the mechanism by which quercetin inhibits I_{ACb} in oocytes expressing $\alpha 3\beta 4$ nicotinic acetylcholine receptors, we analyzed the effect of 20 μM quercetin on I_{ACb} evoked by different acetylcholine concentrations in oocytes expressing $\alpha 3\beta 4$ nicotinic acetylcholine receptors (Fig. 4). Co-application of quercetin with different concen-
Data from [21-23]. Another possibility is that quercetin may work as a competitive inhibitor by inhibiting acetylcholine binding to its binding site(s) in \(\alpha 3 \beta 4 \) nicotinic acetylcholine receptors. In competition experiments, we observed that the presence of quercetin did not shift the concentration of acetylcholine in oocytes expressing \(\alpha 3 \beta 4 \) nicotinic acetylcholine receptors. It is known that open channel blockers such as local anesthetics or hexamethonium are strongly voltage dependent, due to the charge that they carry in the transmembrane electrical field.

DISCUSSION

In the present study, we demonstrated that (1) co- or pre-treatment with quercetin and acetylcholine inhibited \(L_{Ac} \) in oocytes expressing bovine \(\alpha 3 \beta 4 \) nicotinic acetylcholine receptor in reversible and concentration-dependent manner, (2) the inhibition of \(L_{Ac} \) by quercetin occurred in a non-competitive and voltage-independent manner in oocytes expressing \(\alpha 3 \beta 4 \) nicotinic acetylcholine receptors, indicating that quercetin could be associated with the inhibitory regulator on \(L_{Ac} \) in oocytes expressing \(\alpha 3 \beta 4 \) nicotinic acetylcholine receptors (Fig. 3 and 4).

From the present results, however, it is unclear precisely how quercetin acts to inhibit \(L_{Ac} \) in oocytes expressing \(\alpha 3 \beta 4 \) nicotinic acetylcholine receptor. One possible mechanism is that quercetin may act as open channel blocker of \(\alpha 3 \beta 4 \) nicotinic acetylcholine receptors but this may be not the case because the inhibitory effect of quercetin on \(L_{Ac} \) in oocytes expressing \(\alpha 3 \beta 4 \) nicotinic acetylcholine receptors was not voltage-dependent (Fig. 3). It is known that open channel blockers such as local anesthetics or hexamethonium are strongly voltage dependent, due to the charge that they carry in the transmembrane electrical field.

Another possibility is that quercetin may work as a competitive inhibitor by inhibiting acetylcholine binding to its binding site(s) in \(\alpha 3 \beta 4 \) nicotinic acetylcholine receptors. Based on present results and previous reports, it is likely that quercetin achieves its effect through direct interactions with \(\alpha 3 \beta 4 \) nicotinic acetylcholine receptors. However, there might be some difficulties to construct mutant \(\alpha 3 \beta 4 \) nicotinic acetylcholine receptors to confirm quercetin binding sites compared to the previous homomeric ligand-gated ion channels, since \(\alpha 3 \beta 4 \) nicotinic acetylcholine receptors consist of heteromeric \(\alpha \) and \(\beta \) subunits. In future, further investigations will be required to identify quercetin binding site(s) on \(\alpha 3 \beta 4 \) nicotinic acetylcholine receptors.

Since subsets of nicotinic acetylcholine receptor channels play an important role for fast synaptic transmissions in postsynaptic sites, there are several reports on the regulations of nicotinic acetylcholine receptor channel activity using natural compounds such as flavonoids and polyphenols. Gronlien et al showed that genistein, one of flavonoids, inhibits \(\alpha 7 \) nicotinic acetylcholine receptor channel activity in oocytes expressing \(\alpha 7 \) nicotinic acetylcholine receptor [24]. Zhang et al showed that nobiletin, one of flavonoids inhibited catecholamine release by acetylcholine, whereas nobiletin stimulate catecholamine release via activation of \(Ca^{2+} \) channels or Na\(^+\)/Ca\(^{2+}\) exchangers [25]. In addition, Shinohara et al demonstrated that resveratrol, one of grape polyphenol exhibited a profound effect by inhibiting on \(\alpha 3 \beta 4 \) nicotinic acetylcholine receptor and polyphenols of Rubus coreanum also inhibited catecholamine release from adrenal medulla [26,27]. On the other hand, in the previous studies we found that quercetin enhanced \(\alpha 7 \) nicotinic acetylcholine receptor channel activity with extracellular Ca\(^{2+}\)-independent manner, whereas quercetin inhibited \(\alpha 9 \) \& \(10 \) nicotinic acetylcholine receptor channel activity. In the present study, we found that quercetin inhibited \(L_{Ac} \) in oocytes expressing \(\alpha 3 \beta 4 \) nicotinic acetylcholine receptors. Taking together of previous reports.

From the present results, however, it is unclear precisely how quercetin acts to inhibit \(L_{Ac} \) in oocytes expressing \(\alpha 3 \beta 4 \) nicotinic acetylcholine receptor. One possible mechanism is that quercetin may act as open channel blocker of \(\alpha 3 \beta 4 \) nicotinic acetylcholine receptors but this may be not the case because the inhibitory effect of quercetin on \(L_{Ac} \) in oocytes expressing \(\alpha 3 \beta 4 \) nicotinic acetylcholine receptors was not voltage-dependent (Fig. 3). It is known that open channel blockers such as local anesthetics or hexamethonium are strongly voltage dependent, due to the charge that they carry in the transmembrane electrical field [21-23].
and present results, these results indicate that quercetin might be a differential regulator of nicotinic acetylcholine receptors.

On the other hand, the previous reports have shown that various agents such as serotonin, strychnine, Ca\(^{++}\) channel blockers, polyamines, steroids such as progestrone and hydrocortisone, ethanol, and metal ion like Zn\(^{++}\), regulate muscle or neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes [29-35]. Interestingly, the mechanism (i.e., voltage dependence or competition with acetylcholine for binding site) by which these substances regulate nicotinic acetylcholine receptors depend on the receptor subunit composition. The previous and present studies showed that quercetin inhibited heteromeric \(\alpha_3\beta_4\) and \(\alpha_9\beta_1\) nicotinic acetylcholine receptor channel activities, whereas quercetin enhanced homomeric \(\alpha_7\) nicotinic acetylcholine receptors. These results show the possibility that the differential effects of quercetin on subset of nicotinic acetylcholine receptor might be also due to different receptor subunit composition. In addition, since these nicotinic acetylcholine receptors may play an important role in modulating the neurotransmitter release or neuronal cell excitability induced by acetylcholine in pre-synaptic or post-synaptic site(s), quercetin-mediated differential regulations of subsets of nicotinic acetylcholine receptor channel activity might contribute to a diverse range of neuropharmacological effects of quercetin [12,13].

In summary, we found that quercetin inhibited \(I_{ACh}\) in oocytes expressing bovine neuronal \(\alpha_3\beta_4\) nicotinic acetylcholine receptors. Since \(\alpha_3\beta_4\) nicotinic acetylcholine receptors are closely involved in neurotransmitter release in adrenal chromaffin cells, these inhibitory effects of quercetin on \(I_{ACh}\) in oocytes expressing bovine neuronal \(\alpha_3\beta_4\) nicotinic acetylcholine receptor might provide the single cellular basis for one of mechanisms for the pharmacological effects of quercetin.

ACKNOWLEDGEMENTS

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (R01-2008-000-10448-0). Support was also provided by the Priority Research Centers Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (2009-0093824), and by BK21 to S.Y. Nah.

REFERENCES

