Inhibition of Arterial Myogenic Responses by a Mixed Aqueous Extract of *Salvia Miltiorrhiza* and *Panax Notoginseng* (PASEL) Showing Antihypertensive Effects

Eun Bok Baek¹, Hae Young Yoo¹, Su Jung Park¹, Young-Shin Chung⁴, Eun-Kyung Hong⁴, and Sung Joon Kim¹,²,³

Department of ¹Physiology, ²Kidney Research Institute, ³Ischemia/Hypoxia Disease Institute, Seoul National University College of Medicine, Seoul 110-799, ⁴Korea Medvill Central Research Laboratory, Seoul 153-801, Korea

The dried roots of Danshen (*Salvia miltiorrhiza*) and Sanchi (*Panax notoginseng*) have been widely used in traditional Chinese medicine for promoting blood circulation as well as various other bodily functions. Here we investigated the effects of a mixture of aqueous extracts of Danshen and Sanchi, named PASEL, on blood pressure and vascular contractility in rats. Orally administered PASEL (62.5 mg/kg and 250 mg/kg, for 5 weeks) lowered the blood pressure of spontaneous hypertensive rats (SHR) but this was not observed in normal Wistar-Kyoto rats (WKR). We then investigated the effects of PASEL on the arterial contraction of the small branches of cerebral arteries (CAs) and large conduit femoral arteries (FAs) in rats. PASEL did not affect high-K (KCl 60 mM)- or phenyleprine (PhE)-induced contracture of FAs. The myogenic response, a reactive arterial constriction in response to increased luminal pressure, of small CA was dose-dependently suppressed by PASEL in SHR as well as control rats. Interestingly, the KCl-induced contraction of small CAs was slowly reversed by PASEL, and this effect was more prominent in SHR than control WKR. PASEL did not inhibit angiotensin-converting enzyme (ACE) activity. These results demonstrated that the antihypertensive effect of PASEL might be primarily mediated by altering the arterial MR, not by direct inhibition of L-type Ca2⁺ channels or by ACE inhibition.

Key Words: Myogenic response, Herbal extract, Blood pressure, Hypertension

INTRODUCTION

Danshen (丹参), the dried root of *Salvia miltiorrhiza* (Fam. Labiatae) has been widely reported to be useful in the treatment of cardiovascular diseases in China, Japan, and Korea. Its effects of “removing blood stasis” were documented in the ancient books of traditional Chinese medicine (TCM); furthermore, various scientific studies have shown that Danshen improved blood microcirculation, dilated the coronary arteries, and prevented myocardial ischemia (Zhou et al., 2005; Cheng, 2007). Apart from vasodilation, anti-hyperlipidemic and anti-homocysteinic actions have also been suggested as beneficial effects of Danshen (Cheng, 2007). Various mechanisms have been suggested for the vasodilatory activity of Danshen extracts; it has also been shown to be involved in the activation of K⁺ channels and inhibition of Ca²⁺ channels (Lam et al., 2006a; 2006b). However, such studies were mostly performed with large conduit arteries that might not directly reflect the in vivo effects on microcirculation or on blood pressure. While not as popular as Danshen, Sanchi (三七根, *Panax notoginseng*) has also been used in treating circulatory disorders in TCM (Sun et al., 2007; Chuang et al., 2008; Li et al., 2008)

Herbal drugs have been widely used in TCM and their beneficial effects have been identified by empirical usage. The combined extracts of multiple herbal materials are often used for the treatment of various diseases in TCM. Based on the background literature mentioned above, we tested the effects of a combination of aqueous extracts of Danshen and Sanchi. The extract was prepared by boiling the above-mentioned herbs in water and lyophilizing it; the resulting mixture was lyophilized and named PASEL (Korea Patent Nr. 0327894; USA Patent Nr. US6589572B2) here.

In the present study, we investigated the in vivo effects of PASEL on blood pressure and vascular contractility of cerebral and femoral arteries in rats. Inhibition of voltage-operated Ca²⁺ channels or receptor-operated Ca²⁺ channels have previously been suggested as possible mechanisms of vasodilatation induced by Danshen and Sanchi (Sun et al., 2007; Chuang et al., 2008; Li et al., 2008). In the present study, therefore, we examined the effects of PASEL on high K⁺-induced contraction and phenyleprine

ABBREVIATIONS: MR, myogenic response; CA, cerebral artery; FA, femoral artery; PhE, phenyleprine; SHR, spontaneously hypertensive rat; WKR, Wista-Kyoto rat; BP, blood pressure; BPM, beat per minute; D_in, inner diameter; P_lum, luminal pressure.
(PhE)-induced contraction of rat femoral arteries.

Total blood pressure is determined from cardiac output and peripheral resistance of blood vessels. Small arteries and arterioles in vivo are partially contracted in response to luminal pressure. Such contraction is referred to as a myogenic response (MR) or myogenic tone because the vascular myocytes are believed to play roles as sensors as well as effectors. The physiological role of MR consists of regulating basal peripheral vascular resistance as well as local blood flow (Dora, 2005; Hill et al., 2006). A deranged MR has been suggested to be the result of pathophysiological changes in hypertension (Koller, 2002; Jarajapu and Knot, 2005, Ahn et al., 2007). Since MR is not observed in conduit arteries such as the femoral artery, we investigated the effects of PASEL on the MR of rat cerebral arteries.

METHODS

Preparation of PASEL

Mixed aqueous extracts of Danshen and Sanchi (1 : 1 by weight) were prepared by boiling the herbs under high pressure (121°C/1.5 kg/cm², 1 hr). The aqueous fraction was separated by filtration using a 100-mesh housing filter, condensed to 2.5~3.0 brix by heating and thermo-lyophilization. The final product was named PASEL.

Experimental animals

The present investigation conforms to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996), and also conforms to Seoul National University College of Medicine guidelines for the care and use of animals. Male WKR or spontaneously hypertensive rats (SHRs, 7~8 week old, male) was used in this study. The animals were anaesthetized with pentobarbital sodium (100 mg/kg) mixed with heparin (100 U/kg), and then sacrificed by heart puncture.

Blood pressure measurement

In order to estimate the effect of PASEL on blood pressure, fifteen spontaneously hypertensive rats (SHRs, 7~8 week old, male) were separated into three groups of five animals. Two groups of SHRs were orally administered with 62.5 mg/kg or 250 mg/kg of PASEL and one group of SHR and Wista-Kyoto rats (WKR, n=5, 7~8 week old, male) was used as the control and was administered with saline. Oral administration of the agents was performed everyday for 5 weeks and body weights were measured once a week. Blood pressures were measured once a week using the tail-cuff method (Coda 6 System, Kent Scientific, USA). The rats were placed in a warmed individual restrainer, and both an occlusion cuff and a volume pressure-recording cuff were placed close to the base of the tail. The pressure recording allowed a noninvasive measurement of systolic blood pressure and heart rate.

Video analysis of pressurized arteries

Small vessels (250~350 μm, i.d., passive) of rat middle cerebral arteries were dissected, and the arterial segments were placed in a glass-bottomed vessel chamber (Model CH/1/SH, Living System Instrument, Burlington, VT, USA). The chamber contained a HEPES-buffered physiological salt solution (pH 7.40±0.03; 140 mmol/l NaCl, 5.4 mmol/l KCl, 1.8 mmol/l CaCl2, 1 mmol/l MgCl2, 0.33 mmol/l NaH2PO4, 10 mmol/l glucose and 10 mmol/l HEPES), and its temperature was set at 37°C using a temperature controller (Model TC-01, Living Systems Instrument, VT, USA). Two pipettes were utilized to cannulate the vessel that was secured with a 12-0 suture. To evaluate the pressure-induced myogenic response, the luminal flow was maintained at zero. After confirming vessel integrity, the intraluminal pressure (P lum) was set to 20 mmHg for at least an additional 60 min; a spontaneous tone was usually developed within this time frame. Vessel dimensions were measured using a video dimension analyzer (Model V94, Living Systems Instrument) and a data acquisition system (Digidata 1200 and Axoscope, Axon Instruments).

To assess myogenic behavior, internal diameters (D in) were measured during a step-like increase of P lum to 80 mmHg or 100 mmHg. On the step change in P lum, the arteriolar diameter was initially increased passively, and then constricted to attain a steady state within 2 to 3 min. After the step change, P lum was returned to 20 mmHg and the vessel concerned was allowed to re-equilibrate for a minimum of 5 min. At the end of each experiment, the maximum D max under the passive dilatation was recorded at 80 mmHg and 100 mmHg in 0 Ca²⁺ solution containing 10 μM sodium nitroprusside. The MR in % scale was calculated using the following equation; MR (%)=100×(D in,0Ca−D in)/D in,0Ca.

Angiotensin converting enzyme (ACE)

ACE activity was measured using following protocol. Briefly, different concentrations of 10 μl PASEL (1, 10, and 100 mg/ml) were added to a mixed solution (490 μl) composed of 0.04 M sodium borate buffer (pH 8.3), 0.9 M NaCl, and 5 mM Hip-His-Leu (Hippuryl-Histidyl-Leucine), and incubated for five minutes at 37°C. Then angiotensin-convert enzyme (Sigma, USA) was added and allowed to react for 15 min at 37°C. Finally, the reaction was stopped by applying 1.2 ml of 0.34 N NaOH. The product, His-Leu, was measured fluorometrically at 365 nm excitation and 495 nm emission with a fluorescence spectrophotometer (Hitachi, model F-2000, Tokyo, Japan) as follows. After 100 μl of O-phthalaldehyde (20 mg/ml) in methanol was added to the reaction solution for 10 min, the solution was acidified with 200 μl of 3 N HCl and centrifuged at 3,000 rpm (Model Union 32 R Plus, Hanil, Seoul, Korea) for 10 min at room temperature. To correct the intrinsic fluorescence of plasma, a time zero blank was prepared by adding plasma after NaOH treatment. Captopril was used as a positive control.

Drugs and chemicals

All drugs and chemicals were purchased from Sigma Chemical (St. Louis, MO). PASEL was dissolved in DMSO (dimethyl sulfoxide) to prepare stock solutions. The final amount of DMSO in the bath solution was less than 0.1%.

Statistical analysis

Results are expressed as mean±S.E.M. Statistical significance was evaluated using the paired or unpaired Student’s t-test (*p value<0.05). N numbers in the Results section and in the figure legends indicate numbers of vessels tested.
RESULTS

Effects of orally applied PASEL on the blood pressure of rats

Blood pressure (BP) and heart rate (beat per minute, BPM) were measured in control Wistar-Kyoto Rats (WKY) and spontaneous hypertensive rats (SHR) every week. Two levels of PASEL (62.5 mg/kg and 250 mg/kg, per oral) were daily applied using a sonde for five weeks. The BP of SHR was decreased from the first week of PASEL application, and this effect was maintained during the tested period of application (Fig. 1A). However, the BP of SHR was not completely reversed to the normal level of control WKY. Normalized percentage change in BP was analyzed (Fig. 1B). The BP was normalized (%) to the initial level in each rat, and the analyzed result demonstrated the BP lowering effect of PASEL. The BP in untreated SHR was continuously increased during the tested period. Interestingly, the BP of WKY was not altered after PASEL treatment. Neither the heart rate (BPM) nor the body weight was affected by PASEL application (Fig. 1C, D).

In vitro effects of PASEL on arterial contraction

Initially, we studied the effects of PASEL on the contraction of large conduit arteries. The isometric contractile force (g) of femoral arteries from SHR was measured using a modified myograph system. An increase in extracellular [K\(^+\)] (60 mM) levels induced a sustained contraction that was repeatedly induced in a reversible manner. The application of PASEL up to 100 µg/ml had no effect on the high K\(^+\)-induced contraction (Fig. 2A, C). We also tested whether levels of PASEL (62.5 mg/kg and 250 mg/kg, per oral) were daily applied using a sonde for five weeks. The BP of SHR was decreased from the first week of PASEL application, and this effect was maintained during the tested period of application (Fig. 1A). However, the BP of SHR was not completely reversed to the normal level of control WKY. Normalized percentage change in BP was analyzed (Fig. 1B). The BP was normalized (%) to the initial level in each rat, and the analyzed result demonstrated the BP lowering effect of PASEL. The BP in untreated SHR was continuously increased during the tested period. Interestingly, the BP of WKY was not altered after PASEL treatment. Neither the heart rate (BPM) nor the body weight was affected by PASEL application (Fig. 1C, D).

In vitro effects of PASEL on arterial contraction

Initially, we studied the effects of PASEL on the contraction of large conduit arteries. The isometric contractile force (g) of femoral arteries from SHR was measured using a modified myograph system. An increase in extracellular [K\(^+\)] (60 mM) levels induced a sustained contraction that was repeatedly induced in a reversible manner. The application of PASEL up to 100 µg/ml had no effect on the high K\(^+\)-induced contraction (Fig. 2A, C). We also tested whether
PASEL inhibited agonist-induced contraction of arteries. Phenyleprine (5 μM) was applied to stimulate alpha-adrenergic receptors, inducing the contraction of the femoral artery. PASEL (100 μg/ml) application had no effect on the phenyleprine-induced contraction (Fig. 2B, C).

The lack of effect of PASEL on KCl-induced contractions indicated that its anti-hypertensive effect might not have been due to a direct inhibition of the voltage-operated Ca^{2+} channels. We thus postulated that the MR of small resistance arteries might be affected by PASEL. The middle cerebral arteries of WKR and SHR were cannulated and a constant pressure was applied (see Methods). To evoke MR, the P_{in} was increased from 20 mmHg to 80 mmHg. The D_{in} was initially increased by the step increase of P_{in} and then slowly recovered to the previous D_{in} or below (Fig. 3A). Such a contraction in response to increased P_{in} was regarded as MR. At the end of each experiment, the maximum passive D_{in} was confirmed under Ca^{2+}-free conditions. The amplitudes of MR were slightly smaller in SHR but not statistically different from those recorded in WKR (Fig. 3B). After confirming the MR at 80 mmHg, PASEL was applied to the bath solution. The effects of PASEL were evaluated by normalizing the D_{in} at each concentration of PASEL to the control D_{in}. The D_{in} was increased by PASEL in a dose-dependent manner in both normal control (WKR, n=12) and SHR (Fig. 3C, D, n=7).

The relaxing effects of PASEL on MR were also observed at higher P_{in} (120 mmHg) but this effect appeared less potent than that observed at 80 mmHg (Fig. 3E).

Different from the effects on the high K^{+}-contraction of the large conduit artery, PASEL treatment suppressed the high K^{+}-induced constriction of pressurized small CAs (Fig. 4). This inhibitory effect was notably slow, and dependent on the concentration of PASEL. Interestingly, the inhibition of high K^{+}-induced constriction of CAs by 100 μg/ml of PASEL was more prominent in SHR than control animals (Fig. 4E).
Inhibition of Myogenic Response by Herbal Extracts, PASEL

Fig. 4. Effects of PASEL on high K\(^+\)-induced constriction of rat cerebral arteries. (A, B) Representative traces of inner diameter (D\(_{in}\)) showing the high K\(^+\)-constriction and the inhibition by PASEL (1~100 μg/ml) treatment in WKR and SHR. (C, D) Summary of the concentration-dependent effects of PASEL in WKR and SHR, respectively. Changes in D\(_{in}\) (∆D\(_{in}\)) are expressed in percent values versus the extent of high-K\(^+\) constriction ∆D\(_{in}\) at 40 mmHg as 100%. The extent of dilation by 100 μg/ml PASEL was more prominent in SHR than WKR (p<0.05, # in D).

DISCUSSION

Here, we showed that a mixture of aqueous extracts of *Salvia miltiorrhiza* and *Panax notoginseng* lowered the blood pressure of SHR and also inhibited the arteriolar myogenic tone in a concentration-dependent manner. Because neither the high-K\(^+\) contraction nor ACE activity was affected by PASEL, it was suggested that the antihypertensive effects of PASEL might be due to its inhibitory effects on the myogenic tone, a unique property of resistance arteries.

In industrialized countries, the risk of becoming hypertensive (blood pressure >140/90 mmHg) during a lifetime exceeds 90%. Essential hypertension can be defined as a rise in blood pressure of unknown cause that increases the risk for cerebral, cardiac, and renal events (Messerli et al., 2007). All antihypertensive drugs are expected to lower blood pressure and this decline is the best determinant of cardiovascular risk reductions. However, differences between drugs exist with respect to reduction of target-organ disease and prevention of major cardiovascular events. Most hypertensive patients need two or more drugs for blood-pressure control and a concomitant statin treatment for risk factor reduction. Patients are exposed to antihypertensive treatment for decades; yet, the long-term safety of these drugs is not well-reported.

As mentioned in *Introduction*, Danshen and Sanchi are popular herbal drugs in TCM for improving various aspects of cardiovascular diseases. Linked to the vasodilatory effects of Danshen and Sanchi, previous studies on their biological action mechanisms have revealed interesting cellular effects: 1) inhibition of receptor-operated Ca\(^{2+}\) entry by a ginsenoside from Sanchi (Guan et al., 2006); 2) inhibition of leukocyte adhesion and ROS (reactive oxygen

No effect of PASEL on angiotensin converting enzymes (ACE)

Some studies have suggested that the antihypertensive effect of Danshen might be due to the inhibition of ACEs (Kang et al., 2002; 2003). However, in our study, the effect of PASEL on ACE activity was inconsistent, showing an apparently positive effect that was statistically insignificant (p>0.05). In contrast, captopril, a positive control, showed the expected inhibitory effects (Fig. 5).
species) production by saponins from Sanchi (Sun et al., 2007); 3) activation of BKCa type K+ channels by salvinionic acid B from Danshen (Lam et al., 2006b); 4) inhibition of Ca2+ channels by Danshen extracts (Lam et al., 2006a); 5) ACE inhibition by lithospermic acid B from Danshen (Kang et al., 2003); 6) antioxidant and antithrombotic effects of trilinolein from Sanchi (Chan et al., 2002). Although the exact molecular target is unidentified, the inhibition of myogenic responses in the resistance of the small artery (Fig. 3) might provide a novel mechanism for the beneficial effects of PASEL on cardiovascular functions.

In the present study, PASEL had no significant effect on the high-K+ contraction of femoral arteries. These results are inconsistent with a report by Lam et al. (2006a) showing that the extracts of Danshen concentration-dependently inhibited the high-K+ contraction of rat femoral arteries. In the study by Lam et al. (2006a), however, the concentration of Danshen extract used was much higher than that used in the present study. We kept the concentration of PASEL lower than 100 μg/ml because the color of the solution darkened above this concentration, and such a high concentration might not be a true reflection of the in vivo effects. Moreover, the study by Lam et al. (2006a) demonstrated that the inhibition of high-K+ contraction was more potently inhibited by a lipid-soluble extract rather than an aqueous extract of Danshen. Since our compounds, PASEL are aqueous extracts of both Danshen and Sanchi, it was likely that the effects of the same amount of PASEL on voltage-operated Ca2+ channels would be relatively weak.

The contractility of small arteries and arterioles are affected by luminal pressure (P_lum), and the resistance arteries show partial contraction in vivo. The P_lum-dependent contraction is referred to as the myogenic response (MR) because the sensing mechanisms are intrinsic to the arterial smooth muscle cells. MR is critical for setting the peripheral vascular resistance and autoregulation of blood flow (Dora, 2005; Hill et al., 2006), derangement of which could promote hypertension (Koller, 2002; Jarajapu and Knot, 2005, Ahn et al., 2007). A number of signaling pathways have been suggested such as mechanosensitive non-selective cation channels (NSC_m), Rho kinase (ROCK), and protein kinase C (PKC) (Hill et al., 2006; Shubert et al., 2008). More proximal to the above mechanisms, altered protein kinase C (PKC) (Hill et al., 2006; Shubert et al., 2008) and NMDA receptor-activated Ca2+ influx through receptor-operated Ca2+ channels (Kanner, 2005, Ahn et al., 2007). A number of signaling pathways as PASEL is beneficial effects of Danshen on coronary blood flow. However, the involvement of multiple pathways as PASEL is a novel mechanism of anti-hypertensive and anti-anginal effects of the medicinal herbs. Further investigation with specific bioactive constituents in terms of their precise mechanisms is required in order to broaden the clinical use of these plants.

ACKNOWLEDGEMENTS

This work was partly supported by the IT R&D program of MKE/IITA [2008-F-029-01, Development of e-Organ system based on Cyber Computing], and by the Joint Technology Development Supporting Business among Industry, Academy and Research Institute (2007).

REFERENCES

Jarajapu YP, Knot HJ. Relative contribution of Rho kinase and protein kinase C to myogenic tone in rat cerebral arteries in femoral arteries, the small CA-specific inhibition implied that PASEL might have a direct effect on the contractile mechanisms distal to the L-type Ca2+ channels, such as rho-kinase. A recent study in SHR demonstrated an enhanced MR that was mediated by the specific activation of rhoA/rho-kinase signaling pathway (Ahn et al., 2007). However, we cannot exclude a possibility that the diverse effects of PASEL on the high-K+ constriction might be due to different types of experimental conditions; isometric tone measurement (FAs) vs. pressurized artery diameter measurement (CAs). More direct investigation is definitely necessary to elucidate the precise mechanism of SHR-specific vasodilation by PASEL.

In summary, a mixed aqueous extract of Danshen and Sanchi showed anti-hypertensive effects in SHR. We report, for the first time, that PASEL inhibited the MR of resistance arteries, and suggest that this might contribute toward a novel mechanism of anti-hypertensive and anti-anginal effects of the medicinal herbs. Further investigation with specific bioactive constituents in terms of their precise mechanisms is required in order to broaden the clinical use of these plants.

This work was partly supported by the IT R&D program of MKE/IITA [2008-F-029-01, Development of e-Organ system based on Cyber Computing], and by the Joint Technology Development Supporting Business among Industry, Academy and Research Institute (2007).

