Kainic Acid-induced Neuronal Death is Attenuated by Aminoguanidine but Aggravated by L-NAME in Mouse Hippocampus

Jong-Seon Byun¹, Sang-Hyun Lee¹, Seong-Ho Jeon², Yong-Soo Kwon², Hee Jae Lee¹, Sung-Soo Kim¹, Young-Myeong Kim³, Myong-Jo Kim⁴,†, and Wanjoo Chun¹,*

¹Department of Pharmacology, College of Medicine, ²College of Pharmacy, ³Department of Molecular and Cellular Biochemistry, College of Medicine, ⁴Division of Bio-resources Technology, Kangwon National University, Chuncheon 200-701, Korea

Nitric oxide (NO) has both neuroprotective and neurotoxic effects depending on its concentration and the experimental model. We tested the effects of NG-nitro-L-arginine methyl ester (L-NAME), a nonselective nitric oxide synthase (NOS) inhibitor, and aminoguanidine, a selective inducible NOS (iNOS) inhibitor, on kainic acid (KA)-induced seizures and hippocampal CA3 neuronal death. L-NAME (50 mg/kg, i.p.) and/or aminoguanidine (200 mg/kg, i.p.) were administered 1 h prior to the intracerebroventricular (i.c.v.) injection of KA. Pretreatment with L-NAME significantly increased KA-induced CA3 neuronal death, iNOS expression, and activation of microglia. However, pretreatment with aminoguanidine significantly suppressed both the KA-induced and L-NAME-aggravated hippocampal CA3 neuronal death with concomitant decreases in iNOS expression and microglial activation. The protective effect of aminoguanidine was maintained for up to 2 weeks. Furthermore, iNOS knockout mice (iNOS⁻/⁻) were resistant to KA-induced neuronal death. The present study demonstrates that aminoguanidine attenuates KA-induced neuronal death, whereas L-NAME aggravates neuronal death, in the CA3 region of the hippocampus, suggesting that NOS isoforms play different roles in KA-induced excitotoxicity.

Key Words: Kainic acid, Nitric oxide, L-NAME, Aminoguanidine, iNOS, Neuronal death

INTRODUCTION

Nitric oxide (NO), a diffusible messenger molecule, plays many important roles in the brain (Bredt and Snyder, 1992; Garthwaite and Boulton, 1995). However, the uncontrolled production of NO may be harmful and contributes to the development of several neuropathological states (Gross and Wolin, 1995). The synthesis of NO is mediated by three distinct isoforms of nitric oxide synthases (NOSs): neuronal (nNOS), endothelial (eNOS), and inducible (iNOS) (Moncada et al., 1997). The fact that the activation of ionotropic glutamate receptors generates NO production by a calcium-dependent process led to the hypothesis that NO could be involved in excitotoxicity (Kiedrowski et al., 1992). Also, a role for NO in certain neurodegenerative processes (Southam and Garthwaite, 1993) and memory disorders (Du and Harvey, 1996; Du et al., 2000) has been proposed. NO production is increased in kainic acid (KA)-induced seizures (Mulsch et al., 1994) and inhibition of NOS activity with 7-nitroindazole, a selective nNOS inhibitor, and N-nitro-L-arginine (L-NAME), a NOS inhibitor, decreases NO production and hippocampal damage, and attenuates seizure activity (Takei et al., 1999; Takei et al., 2001). Aminoguanidine, a selective iNOS inhibitor, protects against ischemic damage in rats by suppressing the excessive production of NO (Danielisova et al., 2004). However, inhibition of NOS with L-NAME or N-omega-nitro-L-arginine (NNA) aggravates KA-induced neuronal damage and focal ischemic neuronal damage (Yamamoto et al., 1992; Ciani et al., 2001). Therefore, it is still controversial whether inhibition of NOS is beneficial to excitotoxic brain injuries (Ciani et al., 2001). Given that the inhibition of NOS can be either protective or neurotoxic depending on the experimental conditions (Buisson et al., 1993a; Buisson et al., 1993b; Rondouin et al., 1993; Schulz et al., 1995), it is necessary to determine the exact physiological consequences of NOS inhibition in instances of excitotoxic brain damage.

In the present study, we examined the different effects of two NOS inhibitors, L-NAME and aminoguanidine, on the hippocampal CA3 neuronal damage induced by the intracerebroventricular injection of KA.

ABBREVIATIONS: KA, kainic acid; L-NAME, NG-nitro-L-arginine methyl ester; NO, nitric oxide; iNOS, inducible nitric oxide synthase; icv, intracerebroventricular.
METHODS

Animals and reagents

Male ICR mice weighing 23-25 g were obtained from Folas-International, Ltd. (Seoul, Korea). Inducible NOS knockout (iNOS^{−/−}) and littermate control mice were purchased from Jackson Laboratory (Bar Harbor, ME, USA). All of the animal experiments were conducted in accordance with the animal care guidelines of the National Institutes of Health (NIH) and Korean Academy of Medical Sciences (KAMS). Mice were housed five per cage in a room maintained at 22±2°C with an alternating 12/12 h light/dark cycle. Food and water were available ad libitum. KA, L-NAME, and aminoguanidine were obtained from Sigma Chemical Co. (St. Louis, MO, USA). KA was prepared as a stock solution at 1 mg/ml in sterile 0.1 M phosphate-buffered saline (PBS, pH 7.4), and aliquots were stored at −20°C until use. L-NAME (50 mg/kg) or aminoguanidine (200 mg/kg) was administered intraperitoneally 1 h prior to KA injection.

Intracerebroventricular (i.c.v.) injection of KA

The administration of KA (0.1 μg/5 μl) was performed according to the procedure established by Laursen and Belknap (Laursen and Belknap, 1986). Briefly, KA was injected at the bregma with a 50-μl Hamilton microsyringe fitted with a 26-gauge needle that was inserted to a depth of 2.4 mm.

In situ labeling of DNA fragmentation

DNA fragmentation analysis, which indicates apoptosis as previously described (Henshall et al., 2001), was performed according to the manufacturer’s instructions using terminal deoxynucleotidyl transferase with peroxide-12-UTP nick-end labeling (TUNEL) (Roche Molecular Biochemicals, Indianapolis, IN, USA). The percentage of TUNEL-positive cells (bright fluorescent green) was assessed by analysis of digitized images from 5 or more microscopic fields of TUNEL-stained cells from TIFF files (Adobe Photoshop).

Immunohistochemistry

All mice were sacrificed at 6 h or 24 h after KA injection. The mice were transcardially perfused and post-fixed for 4 h in 4% paraformaldehyde. The brains were cryoprotected in 30% sucrose, sectioned coronally (40 μm) on a freezing microtome, and collected in cryoprotectant for storage at...
Aminoguanidine attenuates KA-induced neuronal death but L-NAME aggravates

Fig. 2. Representative (I) and quantitative (II) neuronal death measured with Terminal deoxytransferase-mediated dUTP-nick end labeling (TUNEL) assay. KA produces TUNEL-positive neurons within 24 h, and L-NAME (L+KA) treatment potentiates this induction. Aminoguanidine (A+KA) reduces the numbers of TUNEL-positive cells compared with KA-only (KA) and L-NAME-aggravated (A+L+KA) groups. L-NAME and aminoguanidine alone did not affect cell survival (data not shown). Quantitative data represent three independent experiments and are expressed as mean±SEM. *p<0.05, **p<0.01 versus the KA-only treated group. KA & K stand for kainic acid, L for L-NAME, and A for aminoguanidine.

RESULTS

L-NAME aggravates KA-induced neuronal death and aminoguanidine attenuates both KA-induced and L-NAME-aggravated neuronal death

The i.c.v. injection of KA time-dependently killed hippocampal neurons in the CA3 region (Fig. 1IA, E); neuronal death was negligible in vehicle-injected mice (Fig. 1II). L-NAME treatment prior to the KA injection further increased the KA-induced neuronal death (Fig. 1IB, F), whereas pretreatment with aminoguanidine significantly attenuated the KA-induced neuronal loss (Fig. 1IC, G). Co-administration of aminoguanidine with L-NAME showed reduced neuronal death compared with L-NAME alone (Fig. 1ID, H). Similarly, L-NAME pretreatment increased the number of early TUNEL-positive neurons in the CA3 region compared with KA alone (Fig. 2), and aminoguanidine re-
Aminoguanidine produces prolonged survival of hippocampal CA3 neurons

To test the time-dependency of the neuroprotective effects of aminoguanidine, we measured levels of viable neurons in the CA3 region with cresyl violet staining and NeuN immunoreactivity for up to 2 weeks after the KA injection. Neuron number did not change dramatically between 24 h and 2 weeks after KA and aminoguanidine treatment, suggesting that the neuroprotective effects of aminoguanidine were permanent (Fig. 3).

L-NAME potentiates KA-induced iNOS expression in activated microglia

KA induced microglial activation (Fig. 4E) as determined by immunostaining of the microglial marker, OX-6, and the subsequent induction of inducible iNOS (Fig. 4A) in the region of neuronal death. iNOS expression was localized to...
activated microglia. L-NAME treatment prior to KA produced earlier (data not shown) and increased (Fig. 4B) expression of iNOS in activated microglia. However, pre-treatment with aminoguanidine markedly attenuated the KA-induced microglial activation and iNOS expression (Fig. 4C, G). Aminoguanidine also attenuated the L-NAME-potentiated increases in microglial activation and iNOS expression to the level of the KA-only group (Fig. 4D, H).

iNOS knockout mice (iNOS^{−/−}) are resistant to KA-induced neuronal death

To further delineate the role of iNOS in KA-induced neuronal death, we next tested KA-induced neuronal death in iNOS knockout mice (iNOS^{−/−}). KA injection was less toxic in iNOS^{−/−} mice than in littermates with the iNOS gene (Fig. 5I), but L-NAME still potentiated this toxicity (Fig. 5I, II). Similarly, KA treatment produced fewer TUNEL-positive neurons in iNOS^{−/−} mice than wild-type littermates (Fig. 5II, III).

DISCUSSION

In the present study, we demonstrated that inhibiting NOS activity with L-NAME aggravated KA-induced hippocampal neuronal loss in the CA3 region, but that the selective inhibition of iNOS with aminoguanidine significantly attenuated this KA-induced death.

Glutamate and other excitatory amino acids induce neuronal cell death by excitotoxicity, which may contribute to the neuronal cell loss caused by acute insults and chronic degeneration in the central nervous system (Choi, 1988; Coyle and Puttfarcken, 1993; Lee et al., 1999; McNamara, 1999). However, the role of NO in brain excitotoxicity is controversial.

L-NAME has a 20-fold selectivity for the constitutive isoforms of NOS (n- and e-NOS) (Boer et al., 2000) and aminoguanidine has a 5.5 (iNOS/nNOS)- or 11 (iNOS/eNOS)-fold selectivity (Alderton et al., 2001). Therefore, NO originating from iNOS could cause neuronal death, whereas NO from eNOS and nNOS are protective.

NO produced from iNOS can cause neuronal damage,
such as neurological disorders (Koprowski et al., 1993; Sugimoto and Iadecola, 2002) and apoptotic cell death (Kim et al., 1999). Inhibiting iNOS activity decreases glutamate release and improves stroke outcomes after experimental ischemia (Perez-Asensio et al., 2005). Similarly, we found that blockade of NO production from iNOS either with a specific inhibitor, aminoguanidine, or in an iNOS gene knockout significantly attenuated KA-induced neuronal death. However, the role of eNOS inhibition is still controversial. L-NAME protects hippocampal pyramidal neurons against kainate-induced excitotoxicity in rats (Jones et al., 1998) and in newborn rabbits (Takei et al., 2001), but eNOS inhibition can also aggravate seizures in animal models (Haberny et al., 1992; Starr and Starr, 1993; Penix et al., 1994; Tsuda et al., 1997). For example, L-NAME treatment facilitated pilocarpine-induced seizures (Starr and Starr, 1993) and seizures induced by DMCN (methyl-6,7-dimethoxy-4-ethyl-β-carboline-3-carboxylate), an inverse agonist for the GABA A receptor benzodiazepine binding site, in mice (Tsuda et al., 1997). Thus, endogenous NO originating from eNOS may protect against epileptogenesis by excitotoxins. Chronic L-NAME treatment aggravates animal mortality and neuronal damage in KA-induced excitotoxic brain injury (Ciani et al., 2001). Relatively low doses of L-NAME, up to 20 mg/kg, were beneficial against excitotoxic neuronal damage (Jones et al., 1998; Takei et al., 2001), whereas higher doses, ranging from 50 mg/kg to 125 mg/kg, were detrimental (Starr and Starr, 1993; Tsuda et al., 1997). We therefore used a relatively high dose of L-NAME, 50 mg/kg, which aggravated KA-induced death of pyramidal neurons in the CA3 region. NARG (N-nitro-L-arginine), an irreversible NOS inhibitor, exhibits biphasic dosing effects during transient forebrain ischemia in gerbils (Shapira et al., 1994). Low levels of NO from eNOS and/or nNOS, which may not be completely blocked by low doses of L-NAME, could protect brain tissue. However, higher doses of L-NAME, which may completely block these enzymes, produces neuronal death.

In conclusion, the present data demonstrate that NO isoforms play a different role in KA-induced excitotoxicity. Pathological levels of NO originating from iNOS play a detrimental role, whereas NO from eNOS and/or nNOS can be beneficial depending on the magnitude of inhibition. Careful consideration should be applied in selecting NO inhibitors for pharmacological approaches to treating and preventing diseases associated with excitotoxic insults such as epilepsy, ischemia, and traumatic brain injury.

ACKNOWLEDGEMENTS

This study was supported by the Rural Development Administration of the Bio-Green 21 project (20080701-034-003-009-02-00).

REFERENCES

Aminoguanidine Attenuates KA-induced Neuronal Death but L-NAME Aggravates 271

