Effects of Apigenin on Glutamate-induced $[\text{Ca}^{2+}]_i$ Increases in Cultured Rat Hippocampal Neurons

Departments of 1Physiology, 2Pharmacology and 3Anatomy, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea

INTRODUCTION

Glutamate is a major excitatory neurotransmitter in the central nervous system. Glutamate induces opening of ligand-gated non-N-methyl-D-aspartate (non-NMDA) receptor channels that are permeable to mainly Na+, which leads to depolarize membranes in neurons. This depolarization induces Ca$^2+$ influx from the extracellular space through activation of NMDA channel and voltage-gated Ca$^2+$ channels. In addition, glutamate increases influx of intracellular Ca$^2+$ concentration ([$\text{Ca}^{2+}]_i$) by the release of Ca$^{2+}$ from inositol-1,4,5-trisphosphate (IP$_3$)-sensitive intracellular stores through metabotropic glutamate receptor-induced activation of phospholipase C (PLC). The [Ca$^{2+}$]$_i$ can be further increased by the metabotropic glutamate receptor agonist, (S)-3,5-dihydroxyphenylglycine (DHPG, 100 μM, 90 s), and inhibited the caffeine (10 mM, 2 min)-induced [Ca$^{2+}]_i$ responses. Furthermore, treatment with apigenin (30 μM) significantly inhibited the [Ca$^{2+}]_i$ spikes. These data together suggest that apigenin inhibits glutamate-induced calcium signaling in cultured rat hippocampal neurons.

Key Words: Apigenin, Intracellular calcium, Hippocampal neuron, Glutamate, Flavonoid

Flavonoids have been shown to affect calcium signaling in neurons. However, there are no reports on the effect of apigenin on glutamate-induced calcium signaling in neurons. We investigated whether apigenin affects glutamate-induced increase of free intracellular Ca$^{2+}$ concentration ([$\text{Ca}^{2+}]_i$) in cultured rat hippocampal neurons, using fura-2-based digital calcium imaging and microfluorimetry. The hippocampal neurons were used between 10 and 13 days in culture from embryonic day 18 rats. Pretreatment of the cells with apigenin (1 μM to 100 μM) for 5 min inhibited glutamate (100 μM, 1 min) induced [Ca$^{2+}]_i$; increase, concentration-dependently. Pretreatment with apigenin (30 μM) for 5 min significantly decreased the [Ca$^{2+}]_i$ responses induced by two ionotropic glutamate receptor agonists, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA, 10 μM, 1 min) and N-methyl-D-aspartate (NMDA, 100 μM, 1 min), and significantly inhibited the AMPA-induced peak currents. Treatment with apigenin also significantly inhibited the [Ca$^{2+}]_i$ response induced by 50 mM KCl solution, decreased the [Ca$^{2+}]_i$ responses induced by the metabotropic glutamate receptor agonist, (S)-3,5-dihydroxyphenylglycine (DHPG, 100 μM, 90 s), and inhibited the caffeine (10 mM, 2 min)-induced [Ca$^{2+}]_i$ responses. Furthermore, treatment with apigenin (30 μM) significantly inhibited the amplitude and frequency of 0.1 mM [Mg$^{2+}]_i$-induced [Ca$^{2+}]_i$ spikes. These data together suggest that apigenin inhibits glutamate-induced calcium signaling in cultured rat hippocampal neurons.

Key Words: Apigenin, Intracellular calcium, Hippocampal neuron, Glutamate, Flavonoid

Corresponding to: Shin Hee Yoon, Department of Physiology, College of Medicine, The Catholic University of Korea, 505, Banpo-dong, Seocho-gu, Seoul 137-701, Korea. (Tel) 82-2-590-1169, (Fax) 82-2-532-9575, (E-mail) s-hyoon@catholic.ac.kr

ABBREVIATIONS: AMPA, alpha-amino-3-hydroxy-5'-methyl-4-iso- xazolepropionic; DHPG, (S)-3,5-dihydroxyphenylglycine; DMEM, Dulbecco's modified Eagle's medium; HHSS, HEPES-buffered Hanks's balanced salt solution; IP$_3$, Inositol-1,4,5-trisphosphate; [Ca$^{2+}]_i$, intracellular Ca$^{2+}$ concentration; NMDA, N-methyl-D-aspartate; PLC, phospholipase C.
METHODS

Materials

Materials were purchased from the following companies: apigenin; Dulbecco's modified Eagle's medium (DMEM) and fetal bovine serum (FBS) from Invitrogen (Carlsbad, CA); fura-2 acetoxyethyl ester (AM) from Molecular Probes (Eugene, OR); apigenin, NMDA, (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), (S)-3,5-dihydroxyphenylglycine (DHPG) and all other reagents from Sigma (St. Louis, MO).

Primary hippocampal cell culture

Rat hippocampal neurons were grown in primary culture as previously described (Shim et al, 2006) with minor modifications. Sprague-Dawley maternal rats (300-400 g) were used in this study. All experimental procedures performed on the animals were conducted with the approval of the Catholic Ethics Committee of the Catholic University of Korea and were in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals (revised 1996). Fetuses were removed on embryonic day 18 from maternal rats anesthetized with urethane (1.3 g/kg of body weight, i.p.). Animals were decapitated with a knife and decapitated heads were rinsed in Ca2+ and Mg2+-free Hank's balanced salt solution (pH 7.4). Cells were dissociated by triturating through a 5 ml pipette and then a flame- narrowed Pasteur pipette. Cells were pelleted and resuspended in DMEM without glutamine and supplemented with 10% fetal bovine serum and penicillin/streptomycin (100 U/ml and 100 μg/ml, respectively). Dissociated cells were then plated at a density of 50,000 cells/well onto 25 mm round cover glasses that were coated with poly-D-lysine (0.1 mg/ml) and washed with H2O. The cells were grown in a humidified atmosphere of 10% CO2/90% air (pH 7.4) at 37°C. The media were replaced after 72-90 h of plating with DMEM supplemented with 10% horse serum and penicillin/streptomycin and fed every 7 days by exchange of 25% of the media. The cells were cultured without mitotic inhibitors for a minimum of 14 days, and were used between 10 and 13 days in culture. During this period, neurons developed extensive neuritic networks and formed functional synapses.

Digital [Ca2+]i imaging

To measure [Ca2+]i, hippocampal cells were incubated for 45 min at 37°C in 10 nM fura-2 AM in HEPES-buffered Hank's balanced salt solution (HHSS: 20 mM HEPES, 137 mM NaCl, 1.3 mM CaCl2, 0.4 mM MgSO4, 0.5 mM MgCl2, 0.4 mM KH2PO4, 0.6 mM Na2HPO4, 3.0 mM NaHCO3, and 5.6 mM glucose) containing 0.5% bovine serum albumin. The cover glass was then mounted in a flow-through chamber (Thayer et al., 1985) that was superfused at a rate of 1 ml/min for 15 min. Whole-cell currents were amplified in calcium imaging study. Rmin, Rmax, and β were determined in ionomycin-permeabilized cells in calcium free and saturated solution (Rmin=8.82, Rmax=0.999, β=8.52).

Recording of [Ca2+]i spikes using fura-2 based photometry

[Ca2+]i spikes were determined using fura-2 based microfluorimetry (Shim et al, 2006). Cells were loaded, and were placed by the same methods described in calcium imaging study. The bath was mounted on an inverted microscope (Nikon S-100F, Nikon, Tokyo, Japan), and the cells were superfused with HHSS at a rate of 1.5 ml/min for 15 min before starting the experiment. [Ca2+]i spikes were induced by HHSS containing 0.1 mM MgCl2 and 0.01 mM glycine. For excitation of fura-2, light from a 75 W Xe arc lamp (LPS-220, Photon Technology International, NJ) was passed through band-pass filters (340/20 and 380/20 nm, respectively). Excitation light was reflected sequentially from a dichroic mirror (400 nm) through a 40× phase contrast oil immersion objective (Nikon, Japan). Emitted light was reflected through a 510 nm filter to photomultiplier tube (Model 710, Photon Technology International, NJ) operating in photon-counting mode. Recordings were spatially defined with a rectangular diaphragm of photometer (Model D-104C, Photon Technology International). [Ca2+]i was calibrated by the same methods described in calcium imaging study, using an EPC-7 patch-clamp amplifier (HEKA Elektronik, Lambrecht, Germany) and saved on PC using DigiData1322.
Apigenin and Intracellular Calcium

Fig. 1. Apigenin inhibits glutamate-induced [Ca$$^{2+}$$]$$i$$ increases in cultured rat hippocampal neurons.

A, Reproducible glutamate-induced [Ca$$^{2+}$$]$$i$$ increases were induced by treatment with glutamate (100 $$\mu$$M) for 1 min and 20 min intervals (peak 2/peak 1 = 97.5±1.4%, n=21) (Fig. 1A). Pretreatment with apigenin (1 $$\mu$$M) for 5 min did not significantly affect the glutamate-induced [Ca$$^{2+}$$]$$i$$ responses. However, pretreatment with higher concentrations of apigenin (3∼50 $$\mu$$M) inhibited the glutamate-induced responses in a concentration dependent manner (peak 2/peak 1 = 89.7±1.8% at 1 $$\mu$$M, n=8; 79.3±1.8% at 3 $$\mu$$M, n=15; 73.3±5.0% at 10 $$\mu$$M, n=17; 70.0±1.8% at 30 $$\mu$$M, n=14; 67.4±2.0% at 50 $$\mu$$M, n=13; 61.7±7.6% at 100 $$\mu$$M, n=17) (Fig. 1B∼G).

B-F, Pretreatment with apigenin for 5 min inhibited the glutamate-induced responses in a concentration dependent manner. G, Plot summarizes the inhibition of the glutamate-induced [Ca$$^{2+}$$]$$i$$ increases by apigenin (1 $$\mu$$M, n=8; 3 $$\mu$$M, n=15; 10 $$\mu$$M, n=17; 30 $$\mu$$M, n=14; 50 $$\mu$$M, n=13; 100 $$\mu$$M, n=17). Glutamate-induced response is presented as a percentage of initial glutamate-induced [Ca$$^{2+}$$]$$i$$ response (peak 2/peak 1) for apigenin pretreated cells. Data are expressed as means±SEM.

Data analysis

Data are expressed as means±SEM. Significance was determined with unpaired or paired Student’s t-test, and one-way analysis of variance (ANOVA) followed by a Bonferroni’s test.

RESULTS

Effects of apigenin on glutamate-induced [Ca$$^{2+}$$]$$i$$ increases

Treatment with glutamate (100 $$\mu$$M) for 1 min evoked [Ca$$^{2+}$$]$$i$$ increases in cultured rat hippocampal neurons. Reproducible responses could be elicited by applying 100 $$\mu$$M glutamate for 1 min at 20 min intervals (peak 2/peak 1 = 97.5±1.4%, n=21) (Fig. 1A). Pretreatment with apigenin (1 $$\mu$$M) for 5 min did not significantly affect the glutamate-induced [Ca$$^{2+}$$]$$i$$ responses. However, pretreatment with higher concentrations of apigenin (3∼50 $$\mu$$M) inhibited the glutamate-induced responses in a concentration dependent manner (peak 2/peak 1 = 89.7±1.8% at 1 $$\mu$$M, n=8; 79.3±1.8% at 3 $$\mu$$M, n=15; 73.3±5.0% at 10 $$\mu$$M, n=17; 70.0±1.8% at 30 $$\mu$$M, n=14; 67.4±2.0% at 50 $$\mu$$M, n=13; 61.7±7.6% at 100 $$\mu$$M, n=17) (Fig. 1B∼G).

Effects of apigenin on ionotropic glutamate receptor-induced [Ca$$^{2+}$$]$$i$$ increases

In order to determine how apigenin inhibits the glutamate-induced [Ca$$^{2+}$$]$$i$$ increases in hippocampal neurons, we first observed the effects of apigenin on non-NMDA receptors agonist, AMPA-induced [Ca$$^{2+}$$]$$i$$ responses. Reproducible AMPA-induced [Ca$$^{2+}$$]$$i$$ increase was induced by treatment with 10 $$\mu$$M (S)-AMPA for 1 min at 20 min intervals (peak 2/peak 1 = 92.1±4.5%, n=16) (Fig. 2A).

Fig. 2. Apigenin inhibits AMPA-induced [Ca$$^{2+}$$]$$i$$ increases and currents. A, Reproducible AMPA-induced [Ca$$^{2+}$$]$$i$$ increases were induced by treatment with 10 $$\mu$$M (S)-AMPA for 1 min. B, Pretreatment with apigenin (30 $$\mu$$M) for 5 min decreased the AMPA-induced [Ca$$^{2+}$$]$$i$$ increases. C, Graph summarizes the effect of apigenin on the AMPA-induced [Ca$$^{2+}$$]$$i$$ increases (AMPA, n=16; + apigenin, n=16). D, Inhibitory effects of apigenin on AMPA-induced inward currents. Application of AMPA (10 $$\mu$$M, 10 s) evoked inward currents. Pretreatment with apigenin (30 $$\mu$$M) for 5 min inhibited the AMPA-induced inward currents. E, Graph summarizes the effect of apigenin on AMPA-induced peak current (I$$\text{amp}$$(A) (AMPA, n=6; + apigenin, n=6). Data are expressed as means±SEM. *p<0.05 relative to AMPA (unpaired Student’s t-test) **p<0.05 relative to AMPA (paired Student’s t-test).
Fig. 3. Apigenin inhibits NMDA-induced [Ca2+] increases. A, Reproducible NMDA-induced [Ca2+] increases were induced by treatment with 100 μM NMDA for 1 min. B, Pretreatment with apigenin (30 μM) for 5 min decreased the NMDA-induced responses. C, Graph summarizes the effect of apigenin on the NMDA-induced responses (NMDA, n=17; + apigenin, n=13). Data are expressed as means±SEM. *p<0.05 relative to NMDA (unpaired Student’s t-test).

Fig. 4. Apigenin inhibits the high K+-induced [Ca2+] increases. A, Reproducible high K+-induced [Ca2+] increases were induced by treatment with HHSS containing 50 mM KCl for 1 min at 30 min intervals. B, Pretreatment with apigenin (30 μM) for 5 min decreased the high K+-induced responses. C, Graph summarizes the effect of apigenin on the high K+-induced responses (KCl, n=63; + apigenin, n=17). Data are expressed as means±SEM. *p<0.05 relative to KCl (unpaired Student’s t-test).

However, pretreatment with apigenin (30 μM) for 5 min significantly inhibited the AMPA-induced [Ca2+] responses (peak 2/peak 1 = 71.0±2.2%, n=16, p<0.05) (Fig. 2B and C).

Next, we confirmed whether apigenin inhibits AMPA-induced inward currents, using a whole-cell voltage-clamping technique. At a holding potential of −50 mV, reproducible AMPA-induced inward currents were elicited by treatment with 10 μM (S)-AMPA for 10 s at 5 min interval (peak current=98.12±4.8% of control responses, n=6). Pretreatment with apigenin (30 μM) for 5 min significantly inhibited the AMPA-induced peak currents (69.27±5.5% of control responses, p<0.05) (Fig. 2D and E).

In addition, we tested the effects of apigenin on another ionotropic glutamate receptor agonist, NMDA-induced [Ca2+] increases. Reproducible NMDA-induced [Ca2+] increases were induced by treatment with 100 μM NMDA for 1 min at 20 min intervals (peak 2/peak 1 = 96.7±3.3%, n=17) (Fig. 3A). Pretreatment with apigenin (30 μM) for 5 min also significantly inhibited the NMDA-induced [Ca2+] increases (peak 2/peak 1 = 74.2±1.7%, n=13, p<0.05) (Fig. 3B, C).

Effects of apigenin on high K+-induced [Ca2+] increases

Glutamate-induced depolarization secondarily activates voltage-gated Ca2+ channels and increases [Ca2+]. To determine the effect of apigenin on the glutamate-induced secondary activation of Ca2+ channels, we examined whether apigenin affects the depolarization-induced [Ca2+], increases by 50 mM K+ HHSS (Fig. 4). Reproducible [Ca2+], increases were induced by treatment with 50 mM K+ HHSS for 1 min at 30 min intervals (peak 2/peak 1 = 95.7±1.5%, n=63) (Fig. 4A). Treatment with apigenin (30 μM) for 5 min inhibited the high K+-induced [Ca2+] responses (peak 2/peak 1 = 83.6±1.8%, n=17, p<0.05) (Fig. 4B and C).

Effects of apigenin on metabotropic glutamate receptor agonist-induced [Ca2+] increases

Group I metabotropic glutamate receptors (mGluRs), composed of mGluR1 and mGluR5, are exclusively expressed in postsynaptic sites of the hippocampus (Lujan et al., 1996; Martin et al., 1992; Shigemoto et al., 1993). They can induce a release of Ca2+ from intracellular stores.
through an activation of PLC (Conn & Pin, 1997). Therefore, we examined whether apigenin affects the mGluRs-induced \([\text{Ca}^{2+}]_i\) increase. Reproducible \([\text{Ca}^{2+}]_i\) increases were induced by treatment with mGluRs agonist DHPG (100 \(\mu\text{M}\)) for 90 s at 30 min intervals (peak 2/peak 1 = 104.2±2.5%, \(n=35\)) (Fig. 5A). However, pretreatment with apigenin (30 \(\mu\text{M}\)) for 5 min significantly inhibited the DHPG-induced \([\text{Ca}^{2+}]_i\) responses (peak 2/peak 1 = 49.5±8.3%, \(n=25\), \(p<0.05\)) (Fig. 5B and C).

Effects of apigenin on caffeine induced \([\text{Ca}^{2+}]_i\) increases

In addition to IP_3 receptors, the increased \([\text{Ca}^{2+}]_i\), can further mobilize \(\text{Ca}^{2+}\) through \(\text{Ca}^{2+}\)-induced \(\text{Ca}^{2+}\) release from intracellular stores through ryanodine receptors following activation of glutamate receptors (Llano et al, 1994; Sandler & Barbara, 1999). Reproducible \([\text{Ca}^{2+}]_i\) increases were induced by treatment with the ryanodine receptor agonist caffeine (10 mM) for 2 min at 20 min interval (peak 2/peak 1 = 98.0±6.6%, \(n=11\)) (Fig. 6A). Pretreatment with apigenin (30 \(\mu\text{M}\)) for 5 min, however, inhibited the caffeine-induced \([\text{Ca}^{2+}]_i\) increases (peak 2/peak 1 = 58.4±5.2%, \(n=20\), \(p<0.05\)) (Fig. 6B and C).

DISCUSSION

In the present study, apigenin was found to decrease the glutamate-induced \([\text{Ca}^{2+}]_i\), increase by inhibiting AMPA-, NMDA- and high K+- and metabotropic glutamate receptor-induced \([\text{Ca}^{2+}]_i\), increase in cultured rat hippocampal neuron. Apigenin also inhibited caffeine-induced
Ca\(^{2+}\) release. In addition, apigenin inhibited the synaptically-mediated \([Ca^{2+}]\) increase spikes.

In this study, we observed that apigenin inhibited glutamate-induced \([Ca^{2+}]\), increases, AMPA-induced currents and AMPA-induced \([Ca^{2+}]\), suggesting that apigenin can inhibit the \([Ca^{2+}]\) increase by inhibiting the Ca\(^{2+}\)-permeable AMPA receptors and the depolarization-induced \([Ca^{2+}]\), increases stimulated by activation of AMPA receptors. It has earlier been reported that Ca\(^{2+}\)-permeable AMPA receptors as well as Ca\(^{2+}\)-non permeable AMPA receptors are expressed in rat hippocampal neurons (Yin et al, 1999; Ogoshi & Weiss, 2003). In fact, apigenin decreased the NMDA-and high K\(^{+}\)-induced \([Ca^{2+}]\), increase. These data together suggest that apigenin inhibits Ca\(^{2+}\) influx from extracellular space by inhibiting AMPA channels, NMDA channels, and voltage-gated Ca\(^{2+}\) channels, in agreement with a report that apigenin inhibits NMDA channel (Losi et al, 2004). In addition, apigenin has been reported to inhibit an influx of extracellular Ca\(^{2+}\) and a release of intracellular Ca\(^{2+}\) in rat thoracic aorta (Ko et al, 1991).

The group I mGluR agonist, DHPG, induces a release of Ca\(^{2+}\) from IP\(_3\)-sensitive stores by activating PLC (Conn & Pin, 1997; Fagni et al, 2000). In this study, apigenin was found to inhibit the DHPG-induced \([Ca^{2+}]\), increase. However, it remains unclear whether apigenin inhibits Ca\(^{2+}\) release from IP\(_3\)-sensitive stores or DHPG-induced activation of PLC. Further study is needed to determine whether apigenin inhibits a release of Ca\(^{2+}\) from IP\(_3\)-sensitive stores or metabotropic glutamate receptor-induced activation of PLC. The ryanodine receptor agonist caffeine induces a release of Ca\(^{2+}\) from ryanodine-sensitive stores by Ca\(^{2+}\)-induced Ca\(^{2+}\) release (Bennett et al, 1998).

In the present study, apigenin inhibited the caffeine-induced \([Ca^{2+}]\), increase, indicating that apigenin inhibits a release of Ca\(^{2+}\) from ryanodine-sensitive stores via Ca\(^{2+}\)-induced Ca\(^{2+}\) release as well as metabotropic glutamate receptor-induced release of Ca\(^{2+}\) from IP\(_3\)-sensitive Ca\(^{2+}\) stores.

In the present study, apigenin inhibited the glutamate-induced \([Ca^{2+}]\), increase by inhibiting AMPA-, NMDA-, and depolarization-induced Ca\(^{2+}\) influx. Apigenin also inhibited the metabotropic glutamate receptor-induced \([Ca^{2+}]\), increase and Ca\(^{2+}\)-induced Ca\(^{2+}\) release from intracellular stores. These data suggest a possibility that apigenin inhibits synaptic transmission. Reducing \([Mg^{2+}]\), bathing cultured CNS neurons elicits \([Ca^{2+}]\), spikes that depends upon glutaminergic synaptic transmission (Rose et al, 1990; Shen et al, 1996; Abel et al, 2000). In this study, apigenin inhibited the synaptically mediated low \([Mg^{2+}]\)-induced \([Ca^{2+}]\), spikes. These data suggest that apigenin inhibits glutamatergic synaptic transmission in cultured rat hippocampal neurons by inhibiting AMPA-, NMDA-, and depolarization-induced Ca\(^{2+}\) influx as well as metabotropic glutamate receptor-induced release of Ca\(^{2+}\) from IP\(_3\)-sensitive intracellular stores and Ca\(^{2+}\)-induced Ca\(^{2+}\) release from ryanodine-sensitive stores. However, it has not been studied in the present study whether apigenin affects the release of glutamate in the presynaptic sites, although apigenin inhibited the high K\(^{+}\)-induced \([Ca^{2+}]\), increase in the soma.

Apigenin has neuroprotective effects against oxidative stress-induced cell death in SH-SY5Y cells (Wang et al, 2001), or glutamate-induced neurotoxicity in cultured cortical neurons (Losi et al, 2004). Our results showed that apigenin inhibits glutamate-induced calcium signaling. These results suggest a possibility that inhibitory effects of apigenin on glutamate-induced calcium signaling can partly be due to the neuroprotection against neuronal cell death, demonstrating a possibility that apigenin might be used as a neuroprotective agent against glutamate-induced neurotoxicity, partly through inhibition of calcium signaling.

ACKNOWLEDGEMENT

This research was supported by a grant No. R13-2002-005-04001-0(2007) from the Medical Research Center, Korea Science and Engineering Foundation, Republic of Korea.

REFERENCES

Bennett DL, Bootman MD, Berridge MJ, Cheek TR. Ca\(^{2+}\) entry into PC12 cells initiated by ryanodine receptors or inositol 1,4,5-trisphosphate receptors. *Biochem J* 329 (Pt 2): 349–57, 1998

Fig. 7. Apigenin inhibits synaptically mediated Ca\(^{2+}\) spikes induced by treatment with 0.1 mM [Mg\(^{2+}\)], in a cultured rat hippocampal neuron. A. Reducing the extracellular Mg\(^{2+}\) concentration ([Mg\(^{2+}\)]) to 0.1 mM induced [Ca\(^{2+}\)] spikes. B. Treatment with apigenin (30 \(\mu M\)) inhibits the [Ca\(^{2+}\)] spikes. C1 & C2, Graph summarizes the effect of apigenin on 0.1 mM [Mg\(^{2+}\)]-induced [Ca\(^{2+}\)] spikes (control, n=4; + apigenin, n=4). Data are expressed as means±SEM. *p < 0.05 relative to 0.1 mM [Mg\(^{2+}\)], (unpaired Student’s t-test).

Lujan R, Nusser Z, Roberts JD, Shigemoto R, Somogyi P. Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. *Eur J Neurosci* 8: 1488–1500, 1996

Sandler VM, Barbara JG. Calcium-induced calcium release contributes to action potential-evoked calcium transients in hippocampal CA1 pyramidal neurons. *J Neurosci* 19: 4325–4336, 1999

Wang CN, Chi CW, Lin YL, Chen CF, Shiao YJ. The neuroprotective effects of phytoestrogens on amyloid beta protein-induced toxicity are mediated by abrogating the activation of caspase cascade in rat cortical neurons. *J Biol Chem* 276: 5287–5295, 2001