Synergistic Efficacy of Concurrent Treatment with Cilostazol and Probucol on the Suppression of Reactive Oxygen Species and Inflammatory Markers in Cultured Human Coronary Artery Endothelial Cells

So Youn Park, Jeong Hyun Lee, Hwa Kyoung Shin, Chi Dae Kim, Won Suk Lee, Byung Yong Rhim, Yung Woo Shin, and Ki Whan Hong

Departments of 1Pharmacology and 2Internal Medicine, 3Medical Research Center for Ischemic Tissue Regeneration, Pusan National University College of Medicine, Busan 602-739, Korea

In the present study, we aimed to identify the synergistic effects of concurrent treatment of low concentrations of cilostazol and probucol to inhibit the oxidative stress with suppression of inflammatory markers in the cultured human coronary artery endothelial cells (HCAECs). Combination of cilostazol (0.3–3 μM) with probucol (0.03–0.3 μM) significantly suppressed TNF-α-stimulated NAD(P)H-dependent superoxide, lipopolysaccharide (LPS)-induced intracellular reactive oxygen species (ROS) production and TNF-α release in comparison with probucol or cilostazol alone. The combination of cilostazol (0.3–3 μM) with probucol (0.1–0.3 μM) inhibited the expression of vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1) more significantly than did the monotherapy with either probucol or cilostazol. In line with these results, combination therapy significantly suppressed monocyte adhesion to endothelial cells. Taken together, it is suggested that the synergistic effectiveness of the combination therapy with cilostazol and probucol may provide a beneficial therapeutic window in preventing atherosclerosis and protecting from cerebral ischemic injury.

Key Words: Cilostazol, Probucol, VCAM-1, MCP-1, Monocyte adhesion, Synergism, Endothelial cells

INTRODUCTION

Atherosclerosis is a chronic inflammatory process with increased oxidative stress by which the adhesion of monocytes to the vascular endothelium and their subsequent migration into the vessel wall are increased (Libby, 1995; Ross, 1993). In the inflammatory and proliferative responses of the endothelium, adhesion molecules (VCAM-1), chemokines (MCP-1) and cytokines (interleukin-1β and tumor necrosis factor-α) are secreted by the activated endothelial cells in the atherosclerotic lesions (Bevilacqua et al, 1994; Reape et al, 1999). An increased MCP-1 expression was also demonstrated to be implicated in the monocyte adhesion to the endothelium (Gu et al, 1998).

Cilostazol was first introduced to inhibit phosphodiesterase type 3 and to suppress cyclic AMP degradation (Kimura et al, 1985). Recently, cilostazol has been demonstrated to scavenge the hydroxyl and peroxyl radicals (Kim et al, 2002; Choi et al, 2002), and to increase the K⁺ currents in SK-N-SH (human brain neuroblastoma) cells by opening the maxi-K channels (Hong et al, 2003). Most recently, cilostazol was reported to exert a cell-protective effect by suppressing remnant lipoprotein particle (RLP)-stimulated NAD(P)H oxidase-dependent superoxide formation and cytokine (TNF-α and IL-1β) production in the human umbilical vein endothelial cells (Shin et al, 2004). Park et al. (2005) identified the anti-inflammatory action of cilostazol, in that cilostazol inhibits RLP-stimulated increased monocyte adhesion to HUVECs concurrently with suppression of expressions of VCAM-1 and MCP-1.

Probucol, a potent lipid-soluble antioxidant, has been reported to prevent atherogenesis by acting as an antioxidant and suppressing the oxidative modification of low density lipoprotein (LDL) (Carew et al, 1987; Kuzuya et al 1993). In line with these facts, probucol was demonstrated to decrease mononuclear cell adhesion to vascular endothelium in the cholesterol-fed rabbit both in vitro and in vivo studies (Ferns et al, 1993; Faruqi et al, 1994). Interest in probucol has been raised by Tardif et al. (1997) who demonstrated that probucol significantly reduces the rate of coronary artery restenosis after coronary angioplasty in humans. Zapolska-Downar et al. (2001) have further demonstrated the anti-atherogenic effect of probucol, in that probucol downregulates adhesion of monocytes in association with

ABBREVIATIONS: HCAEC, human coronary artery endothelial cell; ROS, reactive oxygen species; LPS, lipopolysaccharide; VCAM, vascular cell adhesion molecule-1; MCP, monocyte chemoattractant protein-1; TNF-α, tumor necrosis factor-α; IL-1β, interleukin-1β.
reduced VCAM-1 expression.

Both cilostazol and probucol have been approved to be safe and efficient in their respective therapeutic categories with some different and similar action mechanisms. Nevertheless, some hitherto uncharacterized untoward effects may limit their long-term uses in clinics. It has been reported that probucol may lower high density lipoprotein level in plasma (Johansson et al., 1995) and rarely prolong the Q-T interval with proarrhythmic risk (Reinoehl et al., 1996). Cilostazol was reported to show side effects such as headache in some patients (Mallikaarjun et al., 1999). To provide a beneficial therapeutic window with fewer side effects, we examined the combination therapy with low concentrations of cilostazol and probucol in the in vitro experiment. Thus, in the present study, we determined effects of low concentration of cilostazol and probucol in combination on the TNF-α-stimulated NAD(P)H-dependent superoxide production, TNF-α release, expression of VCAM-1 and MCP-1 and monocyte adhesion to the endothelial cells, and their effects were compared with the effect of the mono-therapy. It is highly likely that the combination therapy may provide new therapeutic window in coronary artery restenosis and ischemic brain injury with few side effects.

METHODS

Cell cultures

HCAEC (Cambrex, Walkersville, MD) were cultured in the endothelial cell basal media-2 (EGM-2) Bullet kit media (Clonetics, BioWhittaker, San Diego, CA). Cells were grown to confluence at 37°C in 5% CO₂ and used for experiments at not greater than passage 6. U937 (CRL-1593.2; American Type Culture Collection, Manassas, VA) cells were cultured in RPMI 1640 medium containing 10% fetal bovine serum (FBS).

Measurement of superoxide anion

Endothelial homogenates (100 μg protein/well) were placed into the luminometer (Microlumat LB96P, EG & G Berthold). Immediately before recording chemiluminescence, NADH and NADPH (final concentration, 100 μM each) were added, and dark-adapted lucigenin (bis-N-methylacridinium nitrate, 5 μM) was added via an autodispenser. Each experiment was performed in triplicate.

Assay of intracellular ROS

Measurement of intracellular ROS was based on ROS-mediated conversion of non-fluorescent DCFH-DA into DCBH. DCFH is able to react with ROS, and to be rapidly oxidized to the highly fluorescent 2,7-dichlorofluorescein. The intensity of fluorescence reflects the level of oxidative stress. Cells were incubated in the dark for 2 hours at 37°C in 50 mM phosphate buffer, pH 7.4, containing 5 μM DCFH-DA. The quantity of DCFH fluorescence was measured at an emission wavelength of 530 nm and an excitation wavelength of 485 nm by using FLUOstar OPTIMA (BMG LABTECH GmbH, Germany).

VCAM-1 assay

Cells were seeded 2×10⁵ cells/well in 96-well tissue culture plates containing TNF-α for 4 hours. After treatment with 2% paraformaldehyde, cells were incubated for 1 hour with antibodies specific to human VCAM-1 (R&D Systems, Minneapolis, MN) and then further incubated for 1 hour with secondary antibody. The second antibody binding was detected by reaction of tetramethylbenzidine with H₂O₂ (TMB Substrate Reagent Set; BD Biosciences). Absorbance at 450 nm was measured using ELISA reader.

MCP-1 and TNF-α assay

The amounts of MCP-1 and TNF-α in HCAECs supernatants were measured with ELISA kits (R&D Systems, Minneapolis, MN) according to the manufacturer’s protocol.

Adhesion assay

For the adhesion assay, HCAECs were plated on six-well dishes at a density of 1.2×10⁵ cells/well. On the next day, cells received EGM-2 with 0.5% FBS plus drug 15 min before stimulation with TNF-α and then were exposed to TNF-α for 4 hours. Thereafter, human monocytoid U937 cells (3×10⁵ cells/well) were added to each monolayer and incubated under rotating conditions (63 rpm) at room temperature. After removing non-adhering cells, monolayers were fixed with 1% paraformaldehyde. The number of ad-
Concurrent Treatment with Cilostazol and Probucol

Inhibitory effects of cilostazol in combination with probucol on the intracellular ROS levels stimulated by LPS (1 μg/ml). LPS-stimulated intracellular ROS was significantly decreased by cilostazol plus 0.1 μM probucol in combination. ***p < 0.001 vs. cilostazol alone. Results are expressed as mean±S.E.M. of four experiments. Significant differences were shown between cilostazol alone and cilostazol plus 0.1 μM probucol groups by two-way repeated measures ANOVA.

Inhibitory effects on TNF-α formation

Incubation of HCAECs with LPS (1 μg/ml) for 18 hours largely increased TNF-α level (baseline, 20.7±3.8 pg/ml) to 104.7±6.4 pg/ml. Cilostazol (0.3, 1 μM) and probucol (0.3 μM) singly had no effect on TNF-α production, however, combination of cilostazol with probucol significantly decreased the TNF-α level to 78.3 ±5.7 pg/ml (p<0.01) and
Fig. 4. Inhibitory effect of cilostazol in combination with probucol on the VCAM-1 expression in the HCAECs. TNF-α (50 ng/ml)-induced increased VCAM-1 expression was significantly decreased by treatment with cilostazol and 0.1 μM probucol in combination. Results are expressed as mean±S.E.M. of four experiments. ***p < 0.001 vs. cilostazol alone. Significant differences were shown between cilostazol plus 0.03 μM probucol and cilostazol plus 0.1 μM probucol groups by two-way repeated measures ANOVA.

Fig. 5. Effects of cilostazol and probucol in combination on the MCP-1 expression stimulated in the HCAECs by TNF-α (50 ng/ml). Concurrent treatment with 0.3 μM probucol plus 0.3 or 1 μM cilostazol significantly decreased MCP-1 expression in comparison to effect of probucol and cilostazol alone. Results are expressed as mean±S.E.M. of three experiments. *p < 0.05 vs. vehicle.

Fig. 6. Effects of cilostazol and probucol alone and their combination on the monocyte adhesion to HCAECs. TNF-α (50 ng/ml)-stimulated monocyte adherence to HCAECs was assayed under stimulation with TNF-α for 4 hours. TNF-α (50 ng/ml) caused a large increase in monocyte adhesion to HCAECs from 14.4±2.0 cells/mm² (baseline) to 58.1±3.3 cells/mm² (4-fold). TNF-α-stimulated monocyte adherence was significantly decreased by treatment with cilostazol and probucol in combination. Results are expressed as mean±S.E.M. of four experiments. *p < 0.05, **p < 0.01 vs. vehicle, †p < 0.05 vs. probucol alone.

Effects on VCAM-1 and MCP-1

TNF-α (50 ng/ml) (baseline, 0.35±0.03 OD₄₅₀) caused a large increase of VCAM-1 expression (0.69±0.03 OD₄₅₀), to approximately 97%. Probucol in the ranges of 0.03~0.3 μM showed little reduction in VCAM-1 expression (data not shown). Inhibition of VCAM-1 expression by combination of cilostazol (0.3, 1 and 3 μM) with 0.1 μM probucol was clearly observed with a significance (p < 0.001) when compared with treatment with cilostazol alone (Fig. 4).

Under treatment with TNF-α (50 ng/ml), MCP-1 level (baseline, 43.0±2.8 pg/ml) was markedly increased to 293.2±12.4 pg/ml, which was significantly suppressed by the combination of 0.3 μM cilostazol with 0.3 μM probucol (243.9±7.6 pg/ml, p < 0.05) and 1 μM cilostazol with 0.3 μM probucol (226.1±8.0 pg/ml, p < 0.05). Inhibition of MCP-1 expression by the combination therapy was significantly greater than that of probucol or cilostazol alone (Fig. 5).

Effects on monocyte adherence to HCAECs

Adhesion of human mononuclear U937 cells to HCAECs was assayed under stimulation with TNF-α for 4 hours.

66.6±2.9 pg/ml (p < 0.001) (Fig. 3).
adhesion was little affected by cilostazol or probucol alone. Combination of cilostazol (1, 3 μM) with 0.3 μM probucol significantly inhibited adhesion of monocye to 45.0±2.5 cells/mm² (p<0.05) and 43.2±2.1 cells/mm² (p<0.01) (Fig. 6).

DISCUSSION

In the present study, we observed that the concurrent treatment with low concentrations of cilostazol and probucol in the cultured HCAECs synergistically and significantly reduced oxidative stress and inflammatory markers when compared with the effects of the monotherapy with either cilostazol or probucol.

A mounting evidence has emphasized that ROS, including H₂O₂ and hydroxyl radical, induce apoptosis (Li et al, 1997), and that the apoptotic processes play an important role in the cell death in the atherosclerotic plaque (Kockx 1997), and that the apoptotic processes play an important role in the cell death in the atherosclerotic plaque (Kockx et al, 1998). Therefore, prevention of oxidative stress-mediated cell injury is an area of active investigation. In the present study, combination of cilostazol with 0.03 and 0.1 μM probucol synergistically reduced NAD(P)H-dependent superoxide formation and intracellular ROS production in comparison with the monotherapy. Similarly, LPS-stimulated TNF-α production was also significantly decreased by the concurrent administration of probucol (0.3 μM) with 0.3 and 1 μM cilostazol. Considering the reported results that cilostazol has a property to scavenge the hydroxyl and peroxyl radicals (Kim et al, 2002; Choi et al, 2002), and protects cell injury by suppressing NAPDH oxidase-dependent superoxide formation and cytokine (TNF-α and IL-1β) production in the HUVEC (Shin et al, 2004), it is highly possible that the combination therapy with cilostazol and probucol may exert more beneficial effects in reducing the cell death with reduced DNA fragmentation.

VCAM-1 plays an important role in the early atherogenesis. Fruebis et al. (1997, 1999) demonstrated that probucol prevents atherosclerotic lesion formation in the aortic wall of LDL receptor-deficient rabbits accompanied with reduction of VCAM-1 expression and downregulation of adhesion of monocytes (Żąpolska-Downar et al, 2001). In the present study, the combination therapy with cilostazol and either 0.1 or 0.3 μM probucol markedly inhibited VCAM-1 and MCP-1, while low concentration of individual probucol or cilostazol alone showed a marginal reduction in VCAM-1 expression. Inhibition of the adherence of human monocytoid U937 cells to HCAECs by the combination therapy was much stronger then the effect of individual administration of probucol or cilostazol, suggesting that the combined therapy elicits additional substantial and significant inhibition of these variables.

Regarding the action mechanism by which cilostazol reduces expression of adhesion molecules (VCAM-1, ICAM-1 and E-selectin) and chemokine (MCP-1), Park et al. (2005, 2006) have recently suggested that cilostazol inhibits remnant lipoprotein particle-stimulated increased monocyte adhesion to human umbilical vein endothelial cells by suppression of NF-κB via cyclic AMP-dependent protein kinase-activated maxi-K channel opening that is inhibited by iberiotoxin, a maxi-K channel blocker. In light of these results, the maxi-K channel opening-coupled suppression of NF-κB by cilostazol appears to largely contribute to suppression of expression of adhesion molecules (VCAM-1) and chemokine (MCP-1). Furthermore, the antioxidant action of cilostazol and probucol may synergistically contribute to the inhibition of expression of adhesion molecules and chemokine (Kim et al, 2002; Bilenko et al, 2003), in agreement with the report of Sekiya et al. (1999) in that the combined treatment with probucol and cilostazol proved to be safe and effective in preventing acute poststenting complications and suppressing chronic restenosis in patients subjected to coronary angioplasty.

Most recently, Park et al. (2007) confirmed the beneficial synergistic effects of concurrent treatment with low doses of cilostazol and probucol against focal cerebral ischemic infarct in rats. They showed that the ischemic infarct area and volume induced by 2-hour occlusion of middle cerebral artery (MCA) and 22-hour reperfusion in rat brain were significantly reduced, when received cilostazol (20 mg/kg, twice) and probucol (30 mg/kg, twice), accompanied with prominent improvement of neurological function via reducing the inflammatory and oxidative processes, and apoptotic cell death in the ischemic brain in comparison with the effect of cilostazol or probucol monotherapy.

Taken together, the combination therapy with low concentrations of both drugs may clinically provide more effective therapeutic potential in reducing restenosis, preventing atherosclerosis and protecting from cerebral ischemic injury with few side effects.

ACKNOWLEDGEMENT

This work was supported by the MRC program of MOST/KOSEF (R13-2005-009). We are most grateful to Professor Young-Seoub Hong (Department of Preventive Medicine, Dong-A University, School of Medicine, Busan, Korea) for his helpful suggestions on the statistics of this study.

REFERENCES

Camargo TR, Schwezke DC, Steinberg D. Antithromogenic effect of probucol unrelated to its hypocholesterolemic effect: evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. *Proc Natl Acad Sci USA* 84: 7725 – 7772, 1987
Ferns GA, Forster L, Stewart-Lee A, Norouzzadeh J, Anggard

Concurrent Treatment with Cilostazol and Probucol

169
EE. Probucol inhibits mononuclear cell adhesion to vascular endothelium in the cholesterol-fed rabbit. *Atherosclerosis* 100: 171–181, 1993

Kim KY, Shin HK, Choi JM, Hong KW. Inhibition of lipopolysaccharide-induced apoptosis by cilostazol in human umbilical vein endothelial cells. *J Pharmacol Exp Ther* 300: 709–715, 2002

Park SY, Lee JH, Kim YK, Kim CD, Rhim BY, Lee WS, Hong KW. Cilostazol prevents remnant lipoprotein particle-induced monocyte adhesion to endothelial cells by suppression of adhesion molecules and monocyte chemoattractant protein-1 expression via lectin-like receptor for oxidized low-density lipoprotein receptor activation. *J Pharmacol Exp Ther* 312: 1241–1248, 2005

