Expression of Endothelin-1 and Its Receptors in Cisplatin-Induced Acute Renal Failure in Mice

Seokwoo Lee and Dowhan Ahn
Department of Physiology, Kosin University College of Medicine, Busan 602-703, Korea

Endothelin-1 (ET-1) is unequivocally elevated in the kidney with ischemic acute renal failure (ARF), whereas ET receptors (ETAR and ETBR) are variably expressed. Although renal functional and structural changes are similar between ischemic and nephrotoxic ARF, there are few reports on the alteration in the ET system in nephrotoxic ARF. This study was, therefore, undertaken to investigate changes in renal expression of ET-1 and its receptors in nephrotoxic ARF induced by cisplatin. Mice were intraperitoneally injected with 16 mg of cisplatin/kg at a single dose, and the expression of mRNA and protein was then quantified by real-time RT-PCR and Western blot, respectively. Immunohistochemistry was conducted for localization. Three days after treatment, ET-1 transcript in cisplatin-treated mice was thirteen times higher than that in controls, whereas ET-1 peptide was increased by 1.5-fold. Cisplatin caused a 2-fold increase in the levels of ETAR mRNA and protein. Most of the increased immunoreactive ET-1 and ETAR were localized in damaged tubules. Neither the expression of ETBR mRNA nor the abundance and immunoreactive level of ETBR protein were changed. The findings suggest that the individual components of the renal ET system are differentially regulated in cisplatin-induced nephrotoxic ARF.

Key Words: Cisplatin, Acute renal failure, Endothelin, Endothelin receptor

INTRODUCTION

The endothelin (ET) system includes ET isotypes (ET-1, ET-2, ET-3), ET converting enzyme (ECE), and its receptors (ETAR, ETBR). ET exerts its effects by binding to the cell-surface ET receptors, which belong to G protein-coupled receptor. Vasoconstriction, mitogenesis, and anti-apoptosis are mediated through ETAR, whereas vasodilatation, Na and water balance, ET clearance, and inflammatory pain through ETBR (Nelson et al, 2003). Evidence indicates that ET plays a role in the pathophysiology of various forms of renal disease, including renal hypertension (Hoffman et al, 1994; Ahn et al, 2004), renal fibrosis (Chatziantoniou & Dussaule, 2005), transplant rejection (Braun et al, 1999) and renal failure (Takaoka et al, 2000).

Acute renal failure (ARF) is characterized by an abrupt and reversible kidney dysfunction. Two spectra of ARF from intrarenal origin are ischemic and nephrotoxic. Ischemic ARF primarily affects renal hemodynamics with afferent arteriolar vasconstriction. Reduced renal blood flow increases vasoconstrictors such as ET and angiotensin II, and decreases vasodilators such as nitric oxide and prostaglandin I-2 (Sheridan & Bonventre, 2001). The imbalance in intrarenal vasoactive hormones causes persistent intrarenal hypoxia, thereby exacerbating tubular injury (Sheridan & Bonventre, 2001). Nephrotoxic ARF usually causes primary tubular injuries, and an initial decrease in RBF is not necessary for the development of renal functional impairment as in ischemic ARF. Rather, a specific cellular insult may precede in this type of ARF. Depending on nephrotoxicants, injury sites may be glomeruli, proximal tubules, medulla, renal vessels, and interstitium. Tubular dysfunction by nephrotoxicants leads to reduced Na reabsorption, backleak of glomerular filtrate, and tubular obstruction. Both types of ARF result in reduced glomerular filtration, tubular cell necrosis and apoptosis (Stein et al, 1978; Schellmann & Kelly, 1999). Therefore, ischemic and nephrotoxic ARF are likely to show similar functional and histological changes.

Although renal expression of ET-1 in ischemic ARF is elevated in most cases, that of ETAR and ETBR varies depending on ischemic models and investigators (Roubert et al, 1994; Shimizu et al, 1998; Forbes et al, 2001). Prior to evaluating the usefulness of ET receptor antagonists, we examined the expressions of renal ET-1, ETAR and ETBR in nephrotoxic ARF. For that purpose we used cisplatin, which is well-known to cause nephrotoxic ARF (Stein et al, 1978; Ramesh & Reeves, 2002).

METHODS

C57BL/6 male mice of 10 to 11 week ages (20 ∼ 25 g) were

ABBREVIATIONS: ETAR, endothelin A receptor; ETBR, endothelin B receptor; ECE, endothelin-converting enzyme; ARF, acute renal failure.
used and had free access to food and water. The animals received a single intraperitoneal injection of cisplatin (16 mg/kg, body weight) or saline. Seventy-two hrs after the treatment, mice were anesthetized with ketamine (50 mg/kg) and xylazine (16 mg/kg). Blood was drawn from cardiac puncture and then mice were sacrificed with cervical dislocation. Right kidneys and half of the left kidneys were frozen in liquid nitrogen and stored at −80°C for RNA or protein isolation. The rest of left kidneys were fixed in 10% buffered saline, embedded in paraffin, sectioned at 4 μm, and stained with Periodic acid-Shiff (PAS). Plasma creatinine concentration and blood urea nitrogen (BUN) were measured by an enzymatic method using commercially available kits (Asanpharm Co., Seoul, Korea).

Tissue ET-1 level

One preweighed kidney was immersed in a 2 ml solution containing 0.2 M acetic acid and 0.5 M NaCl and then homogenized for 2×10 sec on ice. The homogenate was centrifuged at 30,000 rpm for 30 min., and the supernatant was saved. A BondElut C18 column (Varian, Harbor City, CA, USA) was pre-equilibrated with 3 ml of 60% acetonitrile in 0.1% trifluoroacetic acid (TFA) and washed four times with 0.1% TFA. After applying the supernatant to the column, the column was eluted with 3×3 ml of pre-equilibration solution. The eluant was kept at −70°C and then freeze-dried overnight. ET-1 was measured using EIA kit (IBL, Gunma, Japan) according to the supplier’s instruction.

Real-time RT-PCR

Total RNA was extracted using RNAqueous-4PCR kit (Ambion, Austin, TX, USA) according to manufacturer’s directions and treated with DNase I included in the kit. After spectrophotometric determination of total RNA concentrations, reverse transcription was performed in a total volume of 40 ul containing 0.5 to 1 μg each of RNA and oligo (dT) using SuperScript II first-strand synthesis system (Invitrogen, Carlsbad, CA, USA). PCR was run in a ABI Prism 7000 system with a 25 ul reaction which contained 5 ul of 5-fold diluted cDNA, 1 nM primer, and 2× SYBR II master buffer (Applied Biosystems, Foster City, CA, USA). Reaction conditions are: 95 oC for 10 min followed by 45 cycles at 95 oC for 15 sec and 60 oC for 1 min. The relative mRNA expression was calculated using a comparative delta-delta method as described in ABI user bulletin #2.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Sequence</th>
<th>Size</th>
<th>GenBank</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-1</td>
<td>F 5'-ACT TCT GCC ACC TGG GCA TC-3'</td>
<td>199</td>
<td>NM 010104</td>
</tr>
<tr>
<td>ETAR</td>
<td>R 5'-ACT TGG GCC GCT TAC TTC TT-3'</td>
<td>263</td>
<td>NM 010332</td>
</tr>
<tr>
<td>ETR</td>
<td>F 5'-AGG GTC TTT AAG TCT TGT GC-3'</td>
<td>231</td>
<td>NM 007904</td>
</tr>
<tr>
<td>β-Actin</td>
<td>R 5'-GGG CCT TCT TTT TGT AGT CC-3'</td>
<td>216</td>
<td>NM 007393</td>
</tr>
</tbody>
</table>

ET-1, endothelin-1; ETAR, endothelin A receptor; ETR, endothelin B receptor.

Western blot

The frozen kidney was thawed, and the entire kidney except the papillary region was homogenized in mannitol buffer (300 mM mannitol, 10 mM HEPES/Tris, 1 mM EDTA, pH 7.4) with 1× protease inhibitor cocktail (Sigma, St Louis, MO, USA). Protein concentration was determined using Bio-Rad assay kit (Hercules, CA, USA). For Western blot, an aliquot of homogenates was electrophoresed and then transferred to PVDF membranes (Amersham Pharmacia, Ailington Height, IL, USA). The blot membranes were incubated overnight at 4°C with either 1 : 200 dilution of rabbit anti-ET\(_A\) antibody (Alomone labs, Jerusalem, Israel) and mouse monoclonal anti-ET-1 antibody (Sigma, St Louis, MO, USA) or 1 : 500 dilution of rabbit anti-ET\(_B\) antibody (Alomone labs, Jerusalem, Israel). After washing the membranes, HRP-conjugated secondary antibody was added and signals were detected using ECL kit (Amersham Pharmacia, Ailington Height, IL, USA). To confirm equal loading of sample proteins, blots were stripped for 30 min at 50°C in stripping buffer (100 mM 2-mercaptoethanol, 2% SDS, 62.5 mM Tris-HCl, pH 6.7) and then reprobed with primary antibody to β-actin. The intensity of bands was quantified and normalized to β-actin.

Immunohistochemistry

The kidneys were perfusion-fixed with 4% paraformaldehyde and postfixed overnight in the same solution. Paraffin sections were mounted on probe-on slides (Fisher Scientific Korea, Seoul, Korea), deparaffinized, hydrated, and treated with 3% H\(_2\)O\(_2\) for 6 min to inhibit intrinsic H\(_2\)O\(_2\) of the tissue. H\(_2\)O\(_2\) was removed by extensive washing in immunoblot buffer (Biomed, Foster City, CA, USA). The tissue sections were then treated with blocking buffer (Zymed, South San Francisco, CA, USA) for 15 min and incubated with the primary antiserum of ET-1 (1 : 40), ETAR (1 : 20), or ETR (1 : 40) as instructed by the manufacturer (HistosMouse-Max kit, Zymed, South San Francisco, CA, USA). The immunoreactive signals were observed through 3-amino-9-ethylcarbazole staining.
Expression of Endothelin-1 and Its Receptors in Cisplatin Nephrotoxicity

Statistical analysis

Data are expressed as mean±SD. Unpaired Student’s t-test was performed and a p value less than 0.05 was considered statistically significant.

RESULTS

Induction of ARF

As shown in Table 2, plasma creatinine and BUN were significantly increased at 72 hr after cisplatin treatment, indicating deterioration of renal function. PAS staining showed that cisplatin administration caused necrosis of proximal tubules and produced tubular luminal casts, however, no effects on glomeruli, distal tubules, and medullary regions (data not shown).

Changes in transcript and protein levels

Quantitative real-time PCR was performed to follow changes in mRNA expression of the ET system. Fig. 1 depicts a relative renal expression of ET-1, ETAR, and ETBR mRNAs. Cisplatin administration upregulated ET-1 mRNA by 13-fold and ETAR mRNA by 2-fold compared with controls. However, the expression of ETBR mRNA was not different between cisplatin-treated mice and controls. To examine whether the changes in mRNA level are correlated with protein expression, ELISA and Western blot were conducted. Fig. 2 shows that the content of ET-1 peptide in kidney homogenates was increased by 1.5-fold after cis-

Table 2. Changes in BUN and plasma creatinine concentration

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Cisplatin</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUN (mg/dl)</td>
<td>18.3±4.0</td>
<td>107±31.6*</td>
</tr>
<tr>
<td>P<creatinine (mg/dl)</td>
<td>0.72±0.07</td>
<td>1.11±0.16*</td>
</tr>
</tbody>
</table>

Blood was obtained 72-hr after saline or cisplatin (16 mg/kg) injection. Values are mean±SD of 6 animals. *p<0.05 vs. control.

![Fig. 2. ET-1 contents in kidney homogenates of the control and cisplatin-treated mice. Values are mean±SD of 6 animals. *p<0.05 vs. control.](image)

![Fig. 1. Relative expression of ET-1, ETAR, and ETBR genes in the kidney of the control and cisplatin-treated mice. Real-time RT-PCR was performed as described in Materials and Methods. Relative expression was calculated by a comparative C_T method. Values are mean±SD of 3 separate experiments. *p<0.05 vs. matched control.](image)

![Fig. 3. Representative immunoblots (upper panel) and densitometric analysis (lower panel) of ET-1, ETAR, and ETBR proteins. Each blot was loaded with 50 ug of protein. Band density was normalized to β-actin. Values are mean±SD of 3 separate experiments. *p<0.05 vs. respective control.](image)
platin treatment (p < 0.05). Similar increase was also observed in Western blot (Fig. 3). The primary antibody to ET-1 recognized the band at about 21 kDa, which is the expected size of unprocessed preproET-1 (Gumz et al., 2003). ET₄R expression was increased by 1.7-fold, but ET₃R expression was not different between cisplatin-treated mice and controls.

Localization of immunoreactivity

To examine the localization of protein expression of the ET system, immunohistochemistry was applied (Fig. 4). Immunoreactive ET-1 was strongly detected in some of proximal tubules and vessels, but not in glomeruli. Although it was not as intense as in controls, ET-1 expression was more diffuse in cisplatin-treated mice than in controls. The ET₄R immunoreactivity showed a distribution similar to ET-1 and tended to increase in cisplatin-treated mice. It was predominantly localized in damaged proximal tubules, but was sparsely detected in peritubular capillaries and arteries. In spite of its relatively high background, ET₃R immunoreactivity was not changed by cisplatin treatment.

DISCUSSION

Nephrototoxic ARF is usually caused by heavy metals, anticancer agents, and aminoglycoside antibiotics. There are few reports on the expression of the ET system in nephrototoxic ARF. In cisplatin-induced nephrototoxic ARF, we found that renal damages were confined to the cortex, and ET-1 and ET₄R were up-regulated without change of ET₃R. Yanagisawa et al. (1993) showed that HgCl₂ treatment increased ET-1 mRNA in the kidney. Elevated ET-1 expression has been also found in other renal diseases such as ischemic ARF (Roubert et al., 1994; Shimizu et al., 1998; Forbes et al., 2001), chronic transplant rejection (Deng et al., 2000), polycystic kidney disease (Ong et al., 2003), mesangial proliferative nephritis (Yoshimura et al., 1995), and aminonucleoside-induced nephrosis (Nakamura et al., 1995). ET-1 directly inhibits Na-K-ATPase of renal tubular cells (Garvin & Sander, 1991) and modulates a variety of signal transduction pathways through its receptors as well. Therefore, while there is little doubt that ET-1 plays a certain role in the pathogenesis of renal diseases, it is not yet clear whether ET-1 acts as a causative factor in various renal diseases including ARF. An unusual finding in the present study was that ET-1 mRNA was increased in cis-

Fig. 4. Immunostaining for ET-1, ET₄R, and ET₃R in the renal cortex of control and cisplatin-treated mice. ET-1, ET₄R, and ET₃R are diffusely expressed in tubular segments. Note that intense immunostaining for ET-1 and ET₄R is found in the cisplatin-treated group. Magnification: ×100.
platin-treated mice by 13-fold compared with controls, whereas ET-1 peptide was increased by less than 2-fold (Figs. 1 and 2). Since ET-1 gene is known to be transcriptionally regulated, such a discrepancy remains to be clarified.

Although ET-1 exerts its action through ET_{A}R and/or ET_{B}R, expression of ET receptors varies depending on ischemic ARF models used. In ischemic ARF induced by renal artery occlusion, Nambi et al (1995) showed that the affinity of ET receptor to ET-1 increased, accompanied with no change in the number of ET_{R}R, whereas Forbes et al (2001) demonstrated that the level of ET_{R}R decreased in the cortex. In glycerol-induced ischemic ARF, in which the pronounced fall of renal blood flow has been considered to be an important pathogenic event, ET_{R}R mRNA in the cortex was up-regulated in one study but not in the other study (Roubert et al, 1994; Shimizu et al, 1998). In our model of nephrotoxic ARF, ET_{R}R mRNA and protein was up-regulated by 1.5 to 2.0-fold compared with controls. Considering that ET_{R}R mediates vasoconstrictive action of ET-1, an increase in ET_{R}R expression could have reduced blood supply to the cortex, thus leading to aggravate the renal injury. It is, however, interesting to note that administration of selective ET_{R}R antagonists has partly ameliorated renal tubular injuries and functions, in spite of decreased expression of ET_{R}R in ischemic ARF (Gellai et al, 1994; Birk et al, 1998; Kuro et al, 2000).

ET_{A}R level has been shown to be reduced or increased in ischemic ARF (Roubert et al, 1994; Shimizu et al, 1998; Forbes et al, 2001). The present study showed that both ET_{A}R mRNA and protein expression levels were not different between controls and cisplatin-treated mice. Using a similar ET_{A}R antibody that we have used, Francis et al (2004) reported that ET_{A}R was detected mainly in tubular structures and was preferentially expressed in the inner medulla. We found that the immunoreactivity of ET_{A}R was much greater in the inner medulla than in the cortex and its immunoreactivity in the medulla seemed to be not different between the two groups (data not shown). Because renal damages by cisplatin administration was mainly confined to proximal tubules of the cortex, we speculate that ET_{A}R expression would be least affected, if any.

In conclusion, this study demonstrated that the expressions of ET-1 and ET_{R}R, but not ET_{A}R, were increased, suggesting that the individual components of the renal ET system are differentially regulated in cisplatin-induced nephrotoxic ARF. Therefore, drug targeting to ET_{A}R could help lessen nephrotoxic ARF induced by cisplatin.

REFERENCES

Deng DX, Jiang J, Garcia B, Zhong R, Chakrabarti S. Endothelin-1, endothelin-3 and their receptors (endothelin (A) and endothelin (B)) in chronic renal transplant rejection in rats. Transpl Int 13: 175–182, 2000