Pathologic Outcomes in Men with Low-risk Prostate Cancer Who Are Potential Candidates for Contemporary, Active Surveillance Protocols

Ho Won Kang,1, Jong Yong Lee, Jong Kyoo Kwon, Seong Uk Jeh, Ha Do Jung, Kang Su Cho, Won Sik Ham, and Young Deuk Choi1,3

1Department of Urology, Severance Hospital, Urological Science Institute; 2Department of Urology, Gangnam Severance Hospital, Urological Science Institute; 3Robot and Minimal Invasive Surgery Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea

Received: 6 January 2015
Accepted: 9 March 2015

Address for Correspondence:
Young Deuk Choi, MD
Department of Urology, Robot and Minimal Invasive Surgery Center and Clinical Trial Center for Medical Devices, Severance Hospital, Urological Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea
Tel: +82.2-2228-2317, Fax: +82.2-312-2538
E-mail: youngsd74@yuhs.ac

Funding: This study was supported by a grant from the Korean Foundation for Cancer Research (DB-2011-04-02), Republic of Korea.

INTRODUCTION

Active surveillance (AS) is an emerging treatment strategy for low-risk prostate cancer (PCa) in response to high rates of over-diagnosis using prostate-specific antigen (PSA) levels as a biomarker (1, 2). AS programs are designed to identify patients with clinically indolent tumors and to avoid or delay definitive treatment in these men (3, 4). While AS appears to be a reasonable approach for insignificant tumors, its widespread acceptance remains limited by a lack of consensus in defining appropriate candidates (5). Inclusion criteria for currently used AS guidelines are usually based on the maximum Gleason score, PSA levels and/or PSA density, clinical stage, number of positive biopsy cores, and percentage of single core involvement (6, 7). Currently, various criteria predicting potentially insignificant disease have attempted to strike a balance between maximizing the number of patients who can avoid treatment and minimizing the number of aggressive cases (3, 4, 8, 9). While considerable effort has been devoted to identifying an optimal AS criteria in a clinical practice, adverse pathological features at radical prostatectomy have been reported in 11%-33.5% of potential candidates for AS (10, 11). In addition, most of AS studies do not yet have emphasized the risk of unintended exclusion of actual insignificant PCa. To address these questions, we compared the discriminative performance of contemporary AS criteria to determine whether contemporary AS protocols could sufficiently discriminate clinically significant from indolent tumors in a cohort of low-risk PCa. Specifically, we also assessed the clinical and biopsy characteristics of pathologically insignificant PCa patients who are not eligible for any criteria of published AS protocols.

The purpose of this study was to determine whether contemporary active surveillance (AS) protocols could sufficiently discriminate significant from indolent tumors in men with low-risk prostate cancer. We retrospectively analyzed 312 patients with low-risk prostate cancer treated with radical prostatectomy. After exclusion of patients with fewer than 10 cores taken at biopsy and those who received neo-adjuvant treatment, 205 subjects satisfied the final inclusion criteria. Five widely accepted AS protocols were employed in this study. A total of 82.0% of the patients met the inclusion criteria of at least one protocol, and 18% did not meet any criteria of published AS protocols. A significant proportion of patients had non-organ-confined disease (8.6% to 10.6%) or a Gleason score of 7 or greater (18.6% to 23.9%) between the different AS criteria. Among patients who did not meet any AS criteria, 32.4% of patients had a pathologically insignificant cancer. Our results indicated a significant adverse pathology in patients who met the contemporary AS protocols. On the other hand, some patients in whom expectant management would be appropriate did not meet any criteria of published AS protocols. None of the clinical or histological criteria reported to date is able to sufficiently discriminate aggressive tumors from indolent ones.

Keywords: Prostatic Neoplasms; Active Surveillance; Insignificant Prostate Cancer
oposy according to the D’Amico classification. After exclusion of patients with fewer than 10 cores taken at biopsy and who received neo-adjuvant treatment, 205 subjects satisfied the final inclusion criteria. We identified patients’ eligibility for the inclusion criteria using five AS protocols: Johns Hopkins Medical Institution (JHMI) (12), Memorial Sloan-Kettering Cancer Center (MSKCC) (13), Prostate Cancer Research International Active Surveillance (PRIAS) (14), University of California, San Francisco (UCSF) (15), and University of Miami (UM) (16). Adverse findings were Gleason score upgrade (score 7 or greater) and non-organ-confined cancer on surgical pathology. Pathologically insignificant PCa was defined as being organ-confined with a Gleason score less than or equal to 6 (no Gleason pattern 4/5) and a tumor volume less than 0.5 cm³ (8).

Statistical analysis
Continuous variables are shown as the median and interquartile range (IQR). The sensitivity, specificity, and accuracy of pathologically insignificant PCa predictions between each AS criteria were compared. Sensitivities, specificities, and diagnostic accuracy were calculated using standard formulas: sensitivity = TP/TP+FN; specificity = TN/TN+FP; and accuracy = (TP+TN)/(TP+TN+FP+FN), where TP is the number of true positives, TN is the number of true negatives, FP is the number of false positives, and FN is the number of false negatives. Analysis was performed using SPSS 20.0 software (SPSS Inc., Chicago, IL, USA).

Ethics statement
The study was carried out in agreement with applicable laws and regulations, good clinical practices, and ethical principles as described in the Declaration of Helsinki. The institutional review board of Severance Hospital approved the present study protocol (Approval number: 4-2014-0619).

RESULTS
Table 1 summarizes the baseline characteristics of the 205 low-risk PCa patients included in the analysis. The median prebiopsy PSA and prostate-specific antigen density were 5.4 ng/mL (IQR 4.3-6.9 ng/mL) and 0.16 ng/mL/g (IQR 0.11-0.23 ng/mL/g), respectively. The majority of men had a biopsy Gleason score of 6 and clinical T1c or T2a disease at the time of diagnosis.

After radical prostatectomy, 61 (29.8%) patients had their disease upgraded in the prostatectomy specimen (5 were upgraded to a Gleason score of 6, 50 were upgraded to a Gleason score of 3+4, 4 were upgraded to a Gleason score of 4+3, and 2 were upgraded to a Gleason score of 8) and 26 (12.7%) had non-organ-confined disease (Table 2). The rates of adverse pathology in patients who qualified for each AS protocol are listed in Table 3. A total of 82% of the patients fulfilled the inclusion criteria of at least one protocol, whereas 18% did not meet any criteria of contemporary five AS protocols. The JHMI protocol was the most stringent, with only 34.1% of the patients fulfilling the JHMI criteria, whereas the MSKCC protocol was the most lenient, with...
Table 4. The ability of each active surveillance criterion to identify patients with pathologically insignificant prostate cancer

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Included patients</th>
<th>Pathologically insignificant prostate cancer</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total cohort</td>
<td>205</td>
<td>135 (65.9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Separate criteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JHMI</td>
<td>70</td>
<td>55 (78.6)</td>
<td>40.7</td>
<td>78.6</td>
<td>53.7</td>
</tr>
<tr>
<td>MSKCC</td>
<td>161</td>
<td>119 (73.9)</td>
<td>88.1</td>
<td>40.0</td>
<td>71.7</td>
</tr>
<tr>
<td>PRIAS</td>
<td>109</td>
<td>79 (72.5)</td>
<td>58.5</td>
<td>57.1</td>
<td>58.0</td>
</tr>
<tr>
<td>UCSF</td>
<td>141</td>
<td>104 (73.8)</td>
<td>77.0</td>
<td>47.1</td>
<td>66.8</td>
</tr>
<tr>
<td>UM</td>
<td>96</td>
<td>72 (75.0)</td>
<td>53.3</td>
<td>65.7</td>
<td>57.6</td>
</tr>
<tr>
<td>Combined criteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>168</td>
<td>123 (73.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any</td>
<td>168</td>
<td>123 (73.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>37</td>
<td>12 (32.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

JHMI, Johns Hopkins Medical Institution; MSKCC, Memorial Sloan-Kettering Cancer Center; PRIAS, Prostate Cancer Research International: Active Surveillance; UCSF, University of California, San Francisco; UM, University of Miami.

Table 5. Clinical and biopsy parameters of pathologically insignificant prostate cancer patients who did not meet any criteria of contemporary five AS protocols

<table>
<thead>
<tr>
<th>Case number</th>
<th>PSA (ng/mL)</th>
<th>PSAD (ng/mL)</th>
<th>Ratio of positive cores (%)</th>
<th>Ratio of cancer extent (%)</th>
<th>bGS</th>
<th>Clinical T stage</th>
<th>pGS</th>
<th>T stage</th>
<th>Tumor volume (cc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.97</td>
<td>0.13</td>
<td>35.71 (5/14)</td>
<td>80</td>
<td>6.00</td>
<td>1c</td>
<td>6.00</td>
<td>2c</td>
<td>0.4</td>
</tr>
<tr>
<td>2</td>
<td>3.84</td>
<td>0.09</td>
<td>41.67 (5/12)</td>
<td>60</td>
<td>6.00</td>
<td>1c</td>
<td>6.00</td>
<td>2a</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>6.20</td>
<td>0.21</td>
<td>16.67 (2/12)</td>
<td>70</td>
<td>6.00</td>
<td>2a</td>
<td>6.00</td>
<td>2b</td>
<td>0.3</td>
</tr>
<tr>
<td>4</td>
<td>6.96</td>
<td>0.26</td>
<td>36.36 (4/11)</td>
<td>70</td>
<td>6.00</td>
<td>2a</td>
<td>6.00</td>
<td>2b</td>
<td>0.3</td>
</tr>
<tr>
<td>5</td>
<td>6.06</td>
<td>0.20</td>
<td>50.00 (5/10)</td>
<td>5</td>
<td>6.00</td>
<td>2a</td>
<td>6.00</td>
<td>2c</td>
<td>0.1</td>
</tr>
<tr>
<td>6</td>
<td>6.11</td>
<td>0.10</td>
<td>25.00 (3/12)</td>
<td>60</td>
<td>6.00</td>
<td>2a</td>
<td>6.00</td>
<td>2b</td>
<td>0.3</td>
</tr>
<tr>
<td>7</td>
<td>9.41</td>
<td>0.52</td>
<td>40.00 (4/10)</td>
<td>30</td>
<td>6.00</td>
<td>1c</td>
<td>6.00</td>
<td>2a</td>
<td>0.2</td>
</tr>
<tr>
<td>8</td>
<td>8.29</td>
<td>0.09</td>
<td>33.33 (4/12)</td>
<td>20</td>
<td>6.00</td>
<td>1c</td>
<td>6.00</td>
<td>2b</td>
<td>0.3</td>
</tr>
</tbody>
</table>

PSA, prostate-specific antigen; PSAD, prostate-specific antigen density; bGS, biopsy Gleason score; pGS, pathologic Gleason score.
tivity, specificity and the diagnostic accuracy (11). Our results were similar to those described in previous studies in which significant variations exist in the ability of contemporary AS protocols to predict pathologically insignificant PCa. While numerous investigators described the ability of contemporary AS protocols to predict pathologically insignificant PCa, little is known about the possible exclusion of actual insignificant PCa. Interestingly, 32.4% of patients who did not meet any AS criteria contemporary AS protocols had a pathologically insignificant cancer. These results suggested that none of the currently used clinical or histological criteria have a sufficient sensitivity or specificity for the appropriate selection of candidates for AS (25). Consequently, there is a great need for novel tools such as repeat biopsy, multiparametric magnetic resonance imaging and various blood markers (PSA isoform/kinetics), or others to blend into selection criteria on active surveillance for low-risk prostate cancer.

Our study has both limitations and strengths. It had a retrospective design, which may have introduced some sampling bias. In addition, our study cohorts were consisted of low-risk PCa according to the D’Amico classification, which could be a confounding factor affecting discriminative performance. Therefore, our results should be viewed as a comprehensive consideration of contemporary AS criteria. On the other hand, our data originated from a single institution and a single surgeon, which minimizing performance variability and bias.

In conclusion, significant adverse pathology was identified in patients deemed eligible for contemporary AS criteria. On the other hand, some patients in whom expectant management would be appropriate did not meet any AS criteria. These findings suggest that none of the clinical or histological criteria reported to date is able to sufficiently discriminate aggressive tumors from indolent ones.

DISCLOSURE
The authors have no potential financial conflicts on this subject.

AUTHOR CONTRIBUTION
Conception and design of the study: Kang HW, Jeh SU. Acquisition of data: Kang HW, Kwon JY, Jeh SU. Statistical analysis: Lee JY, Jung HD. First draft of manuscript: Kang HW, Lee JY. Revision and critical review of the manuscript: Cho KS, Ham WS, Choi YD. Manuscript approval: all authors.

ORCID
Ho Won Kang http://orcid.org/0000-0002-8164-4427
Joo Yong Lee http://orcid.org/0000-0002-3470-1767
Young Deuk Choi http://orcid.org/0000-0002-8545-5797

REFERENCES
7. Kryvenko ON, Carter HB, Trock BJ, Epstein JI. Biopsy criteria for dete
8. irending appropriateness for active surveillance in the modern era. Urol


