Anticoagulation for Stroke Prevention in Older Adults with Atrial Fibrillation and Comorbidity: Current Evidence and Treatment Challenges

Avi Sabbag, MD, Xiaoxi Yao, PhD, Konstantinos C. Siontis, MD, and Peter A. Noseworthy, MD

ABSTRACT

The burden of atrial fibrillation (AF) is projected to increase substantially over the next decade in parallel with the aging of the population. The increasing age, level of comorbidity, and polypharmacy will complicate the treatment of older adults with AF. For instance, advanced age and chronic kidney disease have been shown to increase the risk of both thromboembolism and bleeding in patients with AF. Frailty, recurrent falls and polypharmacy, while very common among elderly patients with AF, are often overlooked in the clinical decision making despite their significant interaction with oral anticoagulant (OAC) and profound impact on the patient’s clinical outcomes. Such factors should be recognized, evaluated and considered in a comprehensive decision-making process. The introduction of non-vitamin K oral anticoagulants has radically changed the management of AF allowing for a more individualized selection of OAC. An understanding of the available data regarding the performance of each of the available OAC in a variety of at risk patient populations is paramount for the safe and effective management of this patient population. The aim of this review is to appraise the current evidence, point out the gaps in knowledge, and provide recommendations regarding stroke prevention in older adults with AF and comorbid conditions.

Keywords: Frailty; Warfarin; NOAC; Stroke; Bleeding

INTRODUCTION

The overall prevalence of atrial fibrillation (AF) is increasing due to population aging and an increase in prevalence of other conditions that predispose to AF. It is projected that by 2030 there will be 12.1 million AF cases in the US alone. Advanced age is a critical determinant of the AF-related stroke and systemic embolic risks mandating oral anticoagulant (OAC) therapy. However, advanced age is associated with an increase in bleeding risk, which compounds the risk associated with anticoagulation. This risk is further exacerbated by the fact that advanced age is often accompanied a higher comorbidity burden, polypharmacy, and frailty that further increase the risk of bleeding.
creating a therapeutic challenge for clinicians. Chronic kidney disease (CKD) is of particular interest since up to one-third of outpatients with AF have CKD, and 15–20% of CKD patients have AF. As the incidence of CKD is increasing, an ever-growing patient population with both AF and CKD will require our attention. Also, current approaches of estimating the thromboembolic or bleeding risks with scores such as Congestive Heart Failure, Hypertension, Age ≥75 (Doubled), Diabetes Mellitus, Prior Stroke or Transient Ischemic Attack (Doubled), Vascular Disease, Age 65–74, Female (CHA₂DS₂-VASc) and Hypertension, Abnormal Renal/Liver Function, Stroke, Bleeding History or Predisposition, Labile INR, Elderly, Drugs/Alcohol Concomitantly (HAS-BLED) may be insufficient in fully appreciating the net clinical benefit of OAC use in elderly patients in whom frailty and multi-comorbidity may play more important roles than traditional clinical risk factors.

A patient’s risk of adverse outcomes, particularly major bleeding and more importantly the net clinical benefit of OAC may not be fully approached by simply calculating the CHA₂DS₂-VASc and HAS-BLED scores. A comprehensive analysis of patient’s correct clinical status and treatment regimen is needed. The aim of this review is to appraise the current evidence, review the challenges, and provide recommendations on the decision-making for stroke prevention in older adults with AF and comorbid conditions including kidney disease, frailty, recurrent falls, and polypharmacy (Table 1).

Table 1. Factors to consider in the management of elderly patients with AF

<table>
<thead>
<tr>
<th>Factors</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>CKD (CrCl ≥30 mL/min)</td>
<td>Apixaban – equal to warfarin in prevention of SEE regardless of CKD level. Safety advanced over warfarin increases in parallel to a decrease in CrCl.³⁹ Rivaroxaban – equal to warfarin in both safety and efficacy regardless of CKD level.⁴⁰ Edoxaban – equal to warfarin in both safety and efficacy regardless of CKD level.⁴¹ Dabigatran 150 mg – superior to warfarin in SSE prevention, equal risk of major bleeding. Not recommended in CrCl <50 mL/min.⁴² Dabigatran 110 mg – equal efficacy to warfarin, lower bleeding in CrCl ≥50 mL/min.⁴³</td>
</tr>
<tr>
<td>ESRD</td>
<td>No data showing clear benefit of OAC over no treatment. Rivaroxaban – evidence of more bleeding compared to warfarin.⁷⁰ Dabigatran – evidence of higher risk of major bleeding and death.⁷¹ Apixaban 5 mg b.i.d. – reduced bleeding risk and similar stroke risk compared to warfarin.⁷²</td>
</tr>
<tr>
<td>Frailty</td>
<td>No data showing clear benefit of OAC over no treatment. This is particularly concerning in severe frailty. Rivaroxaban – reduced SSE with similar bleeding risk compared to warfarin.²⁷ Apixaban and dabigatran – equivalent to warfarin in safety and efficacy.²⁷</td>
</tr>
<tr>
<td>Recurrent falls</td>
<td>With few exceptions (uncontrolled epilepsy advanced multisystem atrophy) recurrent fall should not be a reason to withhold OAC. Edoxaban – reduction in all-cause mortality and major bleeding compared to warfarin in patients with high risk of falling.²⁷ Apixaban – superior safety and efficacy compared to warfarin.⁴⁴</td>
</tr>
<tr>
<td>Polypharmacy</td>
<td>Risk of adverse effects increase including bleeding with number concomitant drug. Apixaban – consistent reduction in SSE regardless of the number concomitant drug. Apixaban also has a superior safety profile but the advantage is lost when ≥9 are used.³⁰ Rivaroxaban – safety and efficacy unaffected by number concomitant drug.³⁰</td>
</tr>
</tbody>
</table>

AF = atrial fibrillation; b.i.d. = twice a day; CKD = chronic kidney disease; ESRD = end-stage renal disease; OAE = oral anticoagulant; SSE = stroke or systemic embolism.

https://e-kcj.org
https://doi.org/10.4070/kcj.2018.0261
ADVANCED AGE

Advanced age is one of the most important patient-related factors one needs to consider in the management of AF particularly when aiming to prevent thromboembolic events. The elderly generally have a higher burden of comorbidities, polypharmacy and are more often frail. This combination complicates the decision-making of anticoagulation use due to the more significant competing risks as compared to younger populations. Increased age is one of the strongest independent predictors of thromboembolic events in patients with AF, accounting for a 1.5-fold increase in the relative risk of stroke for every additional decade. However, the risk of stroke is paralleled by an increase in treatment-related bleeding, and particularly intracranial bleeding, giving clinicians pause before initiating OAC therapy. This duality is well represented by the inclusion of age as a risk variable in both CHA2DS2-VASc and HAS-BLED scores. Some evidence suggests that advanced age has a greater impact on the risk of bleeding than the risk of stroke, particularly above the age of 75 years.

Warfarin

The landmark randomized controlled trials that compared warfarin to placebo and established its role in stroke prevention among patients with AF included only a modest (up to 20%) representation of individuals aged 75 years or above. This population was directly addressed by the Birmingham Atrial Fibrillation Treatment of the Aged (BAFTA) trial that randomized 973 patients aged ≥75 years to international normalized ratio (INR)-guided warfarin or aspirin 75 mg daily. The study demonstrated that warfarin was superior to aspirin, with a 2% absolute annual reduction in stroke and arterial embolism. The annual risk of major bleeding with warfarin was 1.8% and it was comparable to treatment with aspirin. These findings may be cautiously further extended to nonagenarians based on a large observational study comprising 15,756 patients with AF and 14,658 without AF, all 90 years or older. The study confirmed the higher risk of ischemic stroke among patients with AF, but found no increase in the risk of intracranial hemorrhage. Among patients with AF in this cohort, warfarin was associated with a 31% reduction in stroke risk (hazard ratio [HR], 0.69; 95% confidence interval [CI], 0.49–0.96) with no significant increase in the risk of intracranial hemorrhage. Therefore, when compared to no antithrombotic therapy or antiplatelet drugs, warfarin was associated with a positive net clinical benefit. However, theses result may be significantly affected by selection bias as only 3.9% of the AF population was treated with warfarin. Nevertheless, a subgroup analysis of the BAFTA trial showed consistent results and found no interaction with advanced age (grouped in to 75–79, 80–84, ≥85 years) and the efficacy of warfarin.

Dabigatran

A total of 7,258 (40%) of the participants of the Long-Term Anticoagulation Therapy (RE-LY) trial were ≥75 years of age and the representation of this age group was well balanced in the 3 treatment arms of dose-adjusted warfarin, dabigatran 110 mg twice a day (b.i.d.) and dabigatran 150 mg b.i.d. A subgroup analysis compared the safety and efficacy of dabigatran to warfarin across 4 age groups (<75, 75 to <80, 80 to <85 and ≥85 years). Both doses of dabigatran were as effective as warfarin in preventing thromboembolism with no significant interaction with age. However, that study showed a clear interaction between age and the risk of major bleeding in the different treatment arms. While both dabigatran doses were associated with lower major bleeding rates than warfarin among patients <75 years of age, the advantage of dabigatran was lost in older patients and the risk was higher compared to warfarin among those aged ≥80 years who were treated with dabigatran 150 mg b.i.d. This
was driven mainly by extracranial bleeding and there was no interaction between age group and treatment arm with respect to intracranial bleeding. Importantly, both dabigatran doses were found to have an interaction with age for the effect on all-cause mortality. Both dabigatran doses reduced mortality at lower ages (<75 years), but were similar to warfarin in patients 85 years or older. Furthermore, a meta-analysis of real world observational studies showed higher rates of gastrointestinal bleeding among patients aged ≥75 years compared to warfarin.17)

Rivaroxaban
The Rivaroxaban Once Daily, Oral, Direct Factor Xa Inhibition Compared with Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation (ROCKET AF) trial included 6229 patients (44%) aged ≥75 years.18) Rivaroxaban was found to non-inferior to warfarin for the prevention of thromboembolism, resulted in a similar rate of bleeding events (both major an non major) but was associated with less intracranial bleeding. A subgroup analysis compared the safety and efficacy of rivaroxaban 20 mg once daily (o.d.) (or 15 mg o.d. if CrCl was <50 mL/min) to dose adjusted warfarin among patients aged ≥75 versus <75 years at recruitment.19) There was no interaction between age and treatment for the effect on the composite endpoint of stroke/systemic embolism, major bleeding or mortality.

Apixaban
Of the total 18,201 patients in the Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation (ARISTOTLE) trial,20) 30% (n=5,471) were <65 years old, 39% (n=7,052) were 65–75 years old, and 31% (n=5,672) were ≥75 years old. The safety and efficacy of apixaban 5 mg b.i.d. (or 2.5 mg b.i.d. in patients with 2 or more of the following factors: age ≥80 years, body weight ≤60 kg, serum creatinine ≥1.5 mg/dL) was compared to warfarin across these 3 age groups.21) There was no interaction between age and treatment with regards to stroke or systemic embolism, major bleeding, intracranial hemorrhage or mortality and apixaban resulted in lower rates of stroke or systemic embolism and major bleeding among patients aged ≥65. Furthermore, an additional analysis of patients aged ≥80 yielded consistent results with comparable rates of stroke or systemic embolism, and lower risk of major bleeding and intracranial hemorrhage as in the main analysis.

Edoxaban
The Effective Anticoagulation with Factor Xa Next Generation in Atrial Fibrillation-Thrombolysis in Myocardial Infarction 48 (ENGAGE AF-TIMI 48) trial randomized 21,105 patients to warfarin or edoxaban (60 or 30 mg o.d.).22) Both doses of edoxaban were non-inferior to warfarin in the prevention of stroke or ischemic embolism, but were associated with less major bleeding or cardiovascular death. A subgroup analysis addressed the effect of age on the various treatment regimens by stratifying the cohort into 3 age groups: <65 (n=5,497, 26%), 65 to 74 (n=7,134, 34%), and ≥75 (n=8,474, 40%) years. There was no significant interaction between age and edoxaban with regards to stroke or systemic embolism, major bleeding or intracranial bleeding.23) Post-hoc analyses of patients aged ≥80 years (n=3,591, 17% of the cohort) and patients aged ≥85 (n=899, 4.3% of the cohort) yielded consistent results.
FRAILTY

While aging is inevitably associated with some physiological decline, the extent this decline varies widely between individuals. Frailty may be viewed as an exaggeration of the aging process resulting in loss of reserve and a diminished ability to withstand stress. Frailty is very common with an estimated prevalence of 9.9% among individuals aged over 60 according to a large British study. The prevalence is higher among women, the elderly and among racial and ethnic minorities. It is associated with increased risk of adverse outcomes including falls, delirium, disability and mortality. Identifying and quantifying frailty is not straightforward. Therefore, the use of well validated scales is important. The most widely used and validated models are the phenotype model and the Canadian Study of Health and Aging (CSHA) frailty index.

AF is common among frail patients; moreover, AF has been shown to be associated with frailty independently of age, sex and other common comorbidities. While frailty correlates with higher CHA2DS2-VASC and HAS-BLED scores in AF patients, it may be independently predictive of both cardiovascular and all-cause mortality. It is, therefore, unsurprising that frailty is a common reason for discontinuing or not starting OAC. There is very little information about the risk and benefits of long-term OAC treatment in this population. There are no randomized control trials (RCTs) comparing OAC to placebo and observational studies have the potential to be influenced by selection bias.

A large observational study based on US claims data compared propensity matched frail patients with AF treated with novel oral anticoagulants (NOACs) to patients treated with warfarin. Frailty was defined by the Johns Hopkins Claims-based Frailty Indicator, an algorithm design to identify patients meeting the Fried’s Frailty Phenotype. A total of 2,700, 2,784, and 5,270 patients on apixaban, dabigatran, and rivaroxaban respectively, were compared separately to an equal number of patients treated with warfarin. Apixaban and dabigatran resulted in similar rates of thromboembolism as warfarin. However, rivaroxaban was associated with reduced thromboembolic risk at 2 years without a significant difference in bleeding. However, these findings should be interpreted cautiously due to potential limitations of low statistical power and residual confounding.

CHRONIC KIDNEY DISEASE

CKD is defined as a glomerular filtration rate (GFR) <60 mL/min/1.73 m² for 3 months or longer or with the presence of albuminuria. It is independently associated with a 3.7-fold increase in the risk of stroke. CKD has a profound impact on platelet function, coagulation factors and the endothelium resulting in a pro-thrombotic state. This leads to increased activity of the coagulation system and platelet aggregation which have additive effects in addition to AF-related thrombogenesis. In patients with both AF and CKD there is a 35% increase in relative risk of death and more than a 2-fold increase in major cardiovascular adverse effects.

The combination of AF and CKD is increasingly common, partly due to population aging and the increase in the prevalence of shared risk factors such as hypertension, diabetes and advanced age but also due to sheared pathophysiological processes that create a bidirectional relationship. Thus, subjects with CKD are at a higher risk of developing AF.
and the presence of AF increases the risk of developing renal dysfunction.42 Moreover, AF is associated with more rapid progression of CKD and a 67\% higher risk of developing end-stage renal disease (ESRD),43 contributing to adverse outcomes and mandating close follow up with dose adjustments or even discontinuation of antiarrhythmic drugs, anticoagulants and other medications over time.

Patients with AF and CKD present a particular therapeutic challenge due to the higher bleeding risk.44 Several large registries have demonstrated an increased risk of both intracranial and gastrointestinal bleeding that parallels the degree of renal dysfunction. Furthermore, renal dysfunction is associated with larger intracranial hematoma volumes, worst outcome after intracerebral hemorrhage45 and an increased risk of hemorrhagic transformation after ischemic stroke.46 This is the result of a multifactorial paradoxical decrease in platelet adhesion and aggregation. Possible pathophysiological mechanisms include decreased storage and secretion of platelet-activating mediators, altered intra-platelet calcium mobilization, disturbances in platelet aggregation, increased formation of vascular prostaglandin I\textsubscript{2}, impaired platelet glycoprotein IIIb-IIIa receptor activation and its binding to fibrinogen and von Willebrand factor, anemia, and the presence of uremic toxins.47-49

Current guidelines50,51 recommend using the CHA\textsubscript{2}-DS\textsubscript{2}-VASc score as the default risk assessment tool for thromboembolic events, which, however, does not incorporate CKD as one of its component risk variables. Despite evidence of higher thromboembolic risk, CKD is not routinely considered as part of the thromboembolic risk stratification process. Attempts to incorporate CKD into the CHA\textsubscript{2}-DS\textsubscript{2}-VASc score failed to show consistent improvement in its predictive value.52,53 This is likely the result of strong associations with the other co-variants that comprise the score.54 In light of these results, it is unclear if there is a subpopulation of AF patients in whom a certain degree of CKD may justify OAC despite an otherwise low or borderline CHA\textsubscript{2}-DS\textsubscript{2}-VASc score.

Nevertheless, CKD is a component of all major bleeding risk scores, namely, the HAS-BLED, Anticoagulation and Risk Factors in Atrial Fibrillation (ATRIA), and Outcomes Registry for Better Informed Treatment (ORBIT) scores, with varying definitions of CKD between scores. All 3 scores have been validated for both warfarin56,57 and the non-vitamin K antagonists (VKA) in current use and have been found to have a modest predictive value for bleeding. According the European Society of Cardiology (ESC) guidelines, a high score in one of those scales should not be considered a reason to withhold anticoagulation but rather a reminder to better control all the reversible factors such as labile international normalized ratios, excess alcohol, or concomitant use of nonsteroidal anti-inflammatory drugs and aspirin. Furthermore, in general the net clinical benefit of ischemic stroke prevention versus serious bleeding may even be greater in patients with a high HAS-BLED score.56

Vitamin K antagonists

The evidence of net clinical benefit of VKA use in patients with non-end-stage CKD is robust and is derived from several large retrospective observational cohort studies. These individual studies as well as a meta-analysis incorporating 19 of them,57 suggested a significant decrease in incidence of thromboembolic events and the combined endpoint of bleeding and thromboembolic events.58 A large prospective observational study from the SWEDEHEART registry59 showed that warfarin treatment versus no treatment was associated with significant decrease in the composite outcome of death, myocardial infarction, and ischemic stroke without an increase in the risk of bleeding. The benefit was consistent irrespective of the
degree of CKD, even with epidermal GFR as low as 15 mL/min/1.73 m². Importantly, a large cohort study found that patients with moderate-to-severe CKD had a reduced time in therapeutic range during warfarin treatment despite similar monitoring intensity compared to patients with milder CKD. This indicates the importance of closer monitoring in such patients or consideration of alternative therapies.60)

Non-vitamin K antagonists
All currently available non-VKAs are at least partly eliminated by the kidneys. The proportion of renal elimination is highest for dabigatran (up to 80%), lowest for apixaban (up to 27%), and intermediate for rivaroxaban and edoxaban (up to 36% and 50% respectively). Therefore, renal function should play a major role in the choice of specific agent and its dose. The safety and efficacy of all NOACs compared to warfarin in patients with mild to moderate CKD (CrCl ≥30 mL/min) was evaluated by subgroup analyses of pivotal NOAC studies.61-64 Rivaroxaban was found to be equivalent to warfarin for both the risk of stroke and bleeding regardless of renal dysfunction level. The relative safety advantage of edoxaban was preserved throughout the spectrum of mild to moderate CKD.61 For dabigatran, the rates of stroke or systemic embolism were lower for the 150 mg dose and similar to warfarin for the 110mg dose irrespective of renal function. However, the benefit of reduced bleeding with the dabigatran 110 mg dose over warfarin was absent in patients with CrCl <50 mL/min.63 Lastly, an analysis of the ARISTOTLE trial data demonstrated that apixaban was associated with lower major bleeding risk compared to warfarin across the spectrum of renal function categories. In particular, the comparative safety of apixaban over warfarin became more apparent with advancing CKD severity, while maintaining the same comparative effects on stroke prevention.64

The cumulative data would suggest that NOACs as a group should be preferred over warfarin in this population, as is also supported by a recent Cochran review.60 An important caveat is the lack of any randomized controlled data on the use of NOACs in patients with stage 4 CKD as those patients were excluded from the NOAC trials. Despite that, reduced dose regimens of apixaban, edoxaban and rivaroxaban are approved in Europe for use in patients with severe CKD (stage 4, i.e. a CrCl of 15–29 mL/min). Similarly, in the United States the Food and Drug Administration (FDA) has approved dabigatran, 75 mg b.i.d.; rivaroxaban, 15 mg o.d.; and apixaban, 2.5 mg b.i.d., for patients with stage 4 CKD.

END-STAGE RENAL DISEASE
The net benefit of OAC treatment in patients with ESRD undergoing dialysis remains a matter of debate since it has never been addressed in a placebo controlled randomized controlled trial. The risk of thromboembolism is particularly high in this population,444647 but it is accompanied by a significant increase in bleeding risk.60 Furthermore, AF is associated with a significant increase in mortality risk in ESRD patients.67 There is abundant evidence that warfarin lowers the risk of stroke in patients with severe CKD (stage 4, i.e. a CrCl of 15–29 mL/min). Similarly, in the United States the Food and Drug Administration (FDA) has approved dabigatran, 75 mg b.i.d.; rivaroxaban, 15 mg o.d.; and apixaban, 2.5 mg b.i.d., for patients with stage 4 CKD. The question of net clinical benefit among dialysis patients was directly addressed in an analysis of a large national Danish registry.58 The authors found no decrease in the combined endpoint of stroke of bleeding, nor a decrease in all-cause mortality or cardiovascular death. Furthermore, use of warfarin in ESRD is associated with a higher risk of calciphylaxis70 possibly due to the inhibition of Matrix Gla protein, which is a vitamin
K-dependent inhibitor of vascular calcification. The prevalence of calciphylaxis in chronic dialysis patients is estimated at 4% and warfarin may increase this risk more than 3-fold.

Patients with ESRD were excluded from all NOAC RCTs and therefore all the available data regarding their use stems from observational studies. The largest cohort to date included 281 and 244 patients treated with dabigatran and rivaroxaban, respectively, and showed that both were associated with an increase in major bleeding compared to warfarin. Dabigatran was even associated with a higher risk of hemorrhagic death. Importantly, the bleeding risk was significantly lower when rivaroxaban 15 mg o.d. or dabigatran 75 mg b.i.d. were used. The rates of stroke were too low to allow for any comparison. These results are unsurprising considering the pharmacokinetic studies that demonstrated significant exposure to the drugs in ESRD.

Similar to dabigatran and rivaroxaban, ESRD patients were not included in the pivotal trial that led to the FDA approval of apixaban. However, the FDA approved an updated labeling for use of apixaban in ESRD based on a pharmacokinetic study. The FDA-approved dose is 5 mg b.i.d. unless the usual criteria for dose reduction are met although other studies suggest that this may result in supra-therapeutic levels. Data on clinical outcomes with use of apixaban in dialysis-dependent ESRD patients is very limited. A meta-analysis of 5 small observational studies concluded that apixaban was associated with a reduced bleeding risk and a similar stroke rate compared to warfarin. Similar conclusions were reached by a larger administrative claims-based analysis of Medicare beneficiaries in the United States that included 2,731 patients on apixaban and 23,172 patients on warfarin. In prognostic score-matched cohorts, there was no difference in the rates of thromboembolism between the apixaban and warfarin groups, but apixaban was associated with significantly lower risk of major bleeding (HR, 0.72; 95% CI, 0.59–0.87; p<0.001). These data support the use of apixaban over warfarin for stroke prevention in ESRD patients on dialysis who do not have a prohibitive bleeding risk and in whom anticoagulation is to be used. The larger question of which patients on dialysis would benefit anticoagulation and which would do better without this therapy remains largely unanswered.

The efficacy and long-term safety of edoxaban in ESRD patients was never tested in a clinical study. The drug levels, short-term safety and biomarkers of blood coagulation and fibrinolysis of a reduced dose (15 mg once a day [q.d.]) were tested in a small group of patients severe CKD (30 ≥ CrCl ≥15 mL/min). Plasma drug levels were comparable patients with normal renal function receiving 60mg qD as was the bleeding rate. Similar results have been reported regarding reduced dose of apixaban (2.5 mg b.i.d.) in dialysis patients and rivaroxaban (10 mg q.d.) in ESRD. However these are not enough to insure long term safety and provide no information about efficacy. Therefore, the European Heart Rhythm Association issued no recommendation for routine use of any anticoagulation for ESRD patients with AF and the American Heart Association and American College of Cardiology referend from recommending any of the NOACs in this setting.

ANTICOAGULATION-RELATED NEPHROPATHY

Renal function is affected by multiple factors, including medications and comorbidities. As described previously, AF is associated with a higher risk of new CKD and more rapid progression of existing CKD. An important consideration in this regard is...
Anticoagulation-related nephropathy (ARN), a common but often underdiagnosed syndrome that is estimated to affect 20% of patients treated with warfarin.84 It is defined as acute kidney injury (AKI) without obvious etiology in the setting of an INR >3.0. ARN can lead to new-onset or progression of CKD, and is associated with significant increases in short-term and long-term mortality.84-86 Renal biopsies of these patients reveal dysmorphic red blood cells in the glomerulus under electron microscopy, a uniform presence of hemorrhage and the absence of active glomerulonephritis or other inflammatory process.86 A high index of suspicion is warranted in high-risk populations that include patients with CKD, diabetes mellitus, hypertension and the elderly.84 The diagnosis should be suspected in warfarin-treated patients with unexplained hematuria in whom other causes of AKI have been ruled out. Treatment is supportive and is focused on controlling the INR, preventing hypertension and discontinuing concomitant treatment with anti-aggregants.87

There is evidence that NOACs may be more nephron-protective. A post hoc analysis of the RE-LY cohort showed a more accelerated decline in renal function in patients treated with warfarin compared to both dosages of dabigatran.88 Importantly, poor control of INR (time in therapeutic range <65%) and diabetes were both associated with faster decline in renal function. A post hoc analysis of the ARISTOTLE trial found a similar proportion of decline in renal function in patients on warfarin and apixaban.89 However, apixaban was superior to warfarin in both safety and efficacy regardless of the changes in renal function over time. A nationwide observational study form Taiwan found that all NOACs were associated with a lower risk of acute kidney injury compared to warfarin.90 An analysis of a large U.S. administrative database suggested that NOACs, particularly dabigatran and rivaroxaban, may be associated with lower risks of adverse renal outcomes than warfarin.90

RECURRENT FALLS

Like other markers of deconditioning and frailty, history of falls has been shown to independently predict a higher risk for all-cause mortality and thromboembolism.92 Robust data regarding the management of patients at high risk of falls that require OAC have demonstrated that the benefit of stroke prevention generally outweighs the possible increased risk of intracranial bleeding.93-96 Therefore, current ESC guidelines recommend OAC for this patient population with a few exceptions (e.g. epilepsy or advanced multisystem atrophy with backwards falls).50 These recommendations are based mainly on experiences with warfarin use. A recent subgroup analysis of the ENGAGE AF-TIMI 48 trial showed consistent reductions in all-cause mortality and severe bleeding with edoxaban among patients at risk of falling.97 Another analysis of the ARISTOTLE population showed that the superiority of apixaban with respect to safety and efficacy was consistent with or without a history of falls.98 There are no similar data describing the net benefit of dabigatran or rivaroxaban in patients at high risk of falls.

POLYPHARMACY

Polypharmacy, the concomitant use of multiple different drugs, is common in AF patients, and particularly in the elderly.9 Estimations vary widely depending on the population studied and the definition used. A large systematic review comprising of 10,455 individuals aged ≥65 years found that about 1 in 3 patients were prescribed ≥6 drugs.99 Rates of
polypharmacy among AF patients may be even higher, ranging from 40% to 95%.[100,101] Polypharmacy is associated with an increased risk of mortality, adverse drug reactions, longer hospitalizations, higher re-hospitalization rates and higher risk for both thromboembolism and major bleeding.[102-105]

The extent of possible drug interactions with warfarin is well-established, as is the mechanism of those interactions. Warfarin is metabolized by the cytochrome P450 system with Cytochrome P450 2C9 isozyme (CYP2C9) as the most dominant component. Potent inhibitors of this system like amiodarone, gemfibrozil and antifungal agents thereby increase the bioavailability of warfarin and the risk of bleeding.200 Antibiotics that reduce vitamin K production like quinolones and macrolides can also increase the risk of bleeding. Nonselective nonsteroidal anti-inflammatory drugs also potentiate the bleeding effects of OAC via the indirect inhibition of platelet activation.107

All 4 NOACs are excreted by the P-glycoprotein (P-gp) transporter. Several common cardiac drugs such as verapamil, dronedarone, amiodarone, and quinidine inhibit P-gp activity resulting in a significant increase in the plasma levels of all NOACs.102 Cytochrome P450 3A4 has a more minor role in the elimination of apixaban and rivaroxaban, therefore, drugs that inhibit its function will increase drugs levels to a smaller degree. A recent analysis of 91,330 NOAC users from Taiwan, showed a significant increase in major bleeding when amiodarone, fluconazole, rifampin or phenytoin were concomitantly used with a NOAC.206 The net benefit of apixaban and rivaroxaban over warfarin in patients treated with ≥5 drugs was specifically tested in post hoc analyses of the ARISTOTLE and ROCKET AF trials, respectively.109,109 Apixaban showed a consistent reduction in the risk stroke or systemic embolism (SSE) regardless of number of concomitant drugs used, but the reduction in bleeding risk diminished with the increase in the number of concomitant drugs.205 The extent of polypharmacy or use of ≥1 combined cytochrome P450 3A4 and P-gp inhibitors (like verapamil, diltiazem or amiodarone) did not affect the primary efficacy or safety outcomes of rivaroxaban in comparison to warfarin.209

CONCLUSION

The optimal use of OAC for stroke prevention in older patients with AF and comorbidities including kidney disease, frailty, recurrent falls, and polypharmacy remains a challenge for clinicians. Consistent with the RCT evidence in the general AF population, the NOACs appear to preserve their overall superior safety profile over warfarin in this population. However, currently available risk scores may be insufficient to characterize the attendant stroke and bleeding risks in this patient population. Therefore, individualized and thoughtful shared decision making that acknowledges current knowledge gaps is crucial.

REFERENCES

