Familial systemic lupus erythematosus in two Korean male siblings

Hyun Sik Kang, M.D.*, Hyun Ju Oh, M.D.*, Young Ree Kim, M.D.†, Jae-Wang Kim, M.D.‡ and Kyung-Sue Shin, M.D.*§

Department of Pediatrics*, Laboratory Medicine† and Dermatology‡, Cheju National University School of Medicine
Institute of Medical Science§, Cheju National University, Jeju, Korea

Abstract

Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease characterized by the production of a wide range of autoantibodies, resulting in tissue damage. Although the susceptibility to SLE has been attributed to complex interactions between genetic and environmental factors, the influence of a genetic predisposition to SLE is supported by observations of familial aggregations. Family studies have found that siblings with an SLE-affected relative have a 20-fold higher risk of developing SLE compared with the general population. Here, we present a rare case of two male siblings with SLE. The clinical, laboratory, and histopathological findings of these individuals showed the characteristic features of SLE. Human leukocyte antigen (HLA) typing revealed that the brothers and their mother shared the common HLA haplotype of DRB1*1501 and DQB1*0602, which is significantly associated with disease susceptibility in both family-based and casecontrol studies. This report provides an opportunity to reveal the role of genetic factors in the development of SLE. (Korean J Pediatr 2009;52:611-614)

Key Words: Familial systemic lupus erythematosus, Children, Male, Sibling, Human leukocyte antigen

Introduction

Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease that is characterized by the production of a wide range of autoantibodies directed mainly against nuclear antigens, which may result in damage to tissues. Although susceptibility to SLE has been attributed to complex interactions between genetic and environmental factors, the influence of genetic predisposition to susceptibility to SLE is supported by observations of familial aggregations. Twin studies have confirmed concordance for SLE in 20–30% of monozygotic twins, as opposed to less than 2% concordance for SLE in dizygotic twins. In SLE-affected families, siblings have a 20-fold higher risk of developing SLE, as compared with the general population.

To our knowledge, the previous reports on familial SLE in Korea have showed mother-son pair and sister-sister pair. We present the first case of male siblings with SLE. This report provides an opportunity to uncover the role of genetic factors in the development of SLE.

Case report

A boy aged 11 years and 4 months was referred to Cheju National University Hospital for a facial rash and pain in multiple joints. Upon physical examination, he had an erythematous, facial rash that involved the cheeks bilaterally and the nasal bridge. He complained of pain in both the hands and lower legs, although his joints were quiescent. A complete blood cell count showed a white blood cell count of 4,500 per mm3, hemoglobin level of 12.4 g/dL, and platelet count of 85,000 per mm3. Urinalysis revealed an absence of protein but there was hematuria (18–20 red blood cells/HPF). His chemistry profile at presentation was normal, except for alanine aminotransferase (ALT) count of 4,500 per mm3, hemoglobin (Hb) level of 12.4 g/dL, and platelet count of 85,000 per mm3. Urinalysis revealed an absence of protein but there was hematuria (18–20 red blood cells/HPF). His chemistry profile at presentation was normal, except for alanine aminotransferase (ALT) (74 U/L). He had an antinuclear antibody (ANA) titer of >1:640 (homogenous pattern) and anti-double-stranded DNA (anti-dsDNA) antibody level of 40.36 IU/mL. The subject was negative for antibodies to RNP, SSA/Ro, and SSB/La. The complement levels were as follows: C3, 81 mg/dL; C4, 5 mg/dL; and CH50, 10.2 U/mL. A biopsy of the facial lesion showed features characteristic of SLE. The boy was treated with oral prednisolone (40 mg/day, 1 mg/kg/day) and hydroxychloroquine (100 mg/day). He showed gradual clinical improvement and was discharged with 10 mg/day...
prednisolone and 100 mg/day hydroxychloroquine.

The elder brother of this boy subsequently presented with SLE, having developed symptoms 2 years after his brother, at 14 years of age. He was referred for generalized edema and oliguria. He had a history of Evans syndrome, which had been diagnosed 3 years previously in another hospital. The laboratory findings at that time showed a WBC of 4,500 per mm3, Hb level of 9.0 g/dL, and platelet count of 2,000 per mm3. The patient was ANA-positive with a homogenous pattern. He was negative for both anti-platelet and anti-dsDNA antibodies, and hypocomplementemia was not observed. This patient was treated with high-dose prednisolone (4 mg/kg/day). Over the following 3 months, his platelet counts normalized and the prednisolone treatment was successfully tapered. Six months before the referral, his CBC count was as follows: Hb level, 11.4 g/dL; WBC count of 5,600 per mm3; and platelet count of 216,000 per mm3.

On admission, the patient had an erythematous facial rash involving the cheeks bilaterally and the nasal bridge, and there was bilateral pretilial edema. The CBC revealed a WBC count of 4,600 per mm3, Hb level of 11.4 g/dL, and platelet count of 216,000 per mm3. Urinalysis showed 3+ protein, 2+ blood, 5–7 RBCs/HPF, and 4.2 g/day protein excretion for a 24-hour urine collection. His chemistry profile included elevated levels of blood urea nitrogen (BUN; 29.7 mg/dL), creatinine (1.6 mg/dL), and ALT (54 units/L), and decreased levels of total protein (5.8 mg/dL), serum albumin (2.6 mg/dL), and total calcium (6.3 mg/dL). He had an ANA titer of 1:80 (homogenous pattern) and anti-dsDNA antibody level of 77.75 IU/mL. He was negative for antibodies to RNP, SSA/Ro, and SSB/La. His complement levels were diminished as follows: C3, 56 mg/dL; C4, 3 mg/dL; and CH50, 3.6 U/mL. A renal biopsy showed class III focal segmental proliferative glomerulonephritis (World Health Organization classification of lupus nephritis). Triple therapy, which consisted of intravenous long-term methylprednisolone pulses (1 g/pulse), oral cyclophosphamide (25 mg once a day), and oral cyclophosphamide (50 mg/day), was initiated, to maintain renal remission. The patient was in the hospital for almost 2 months, and oral prednisolone was successfully tapered to 10 mg/day. In addition, the levels of proteinuria and serologic markers of disease activity improved as follows: proteinuria, 0.45 g/day; total protein, 5.6 mg/dL; serum albumin, 2.9 mg/dL; C3, 120 mg/dL; C4, 16 mg/dL; CH50, 37.4 U/mL; and anti-dsDNA antibody, 19.54 IU/mL. Renal function was restored, and the serum creatinine level was normalized (BUN, 11.6 mg/dL; creatinine, 1.2 mg/dL).

Currently, both brothers are doing well. The younger brother is no longer taking hydroxychloroquine but is still receiving prednisolone (10 mg once a day). The elder brother is currently receiving prednisone (15 mg once a day), calcium carbonate (500 mg once a day), cyclophosphamide (25 mg once a day), and ramipril (5 mg once a day).

Human leukocyte antigen (HLA) typing was performed, and the two brothers and their mother were found to share the haplotype of the DRB1*1501, DPB1*0201, and DQB1*0602 alleles (Table 1).

Discussion

Family studies have revealed a higher than expected prevalence among the relatives of patients with SLE. Although the precise prevalence of familial SLE is not known, approximately 10% of patients with SLE have a first-degree relative with SLE, as compared to 1% of patients in control families. In familial SLE, the most frequent mode of familial intra-aggregation is affected sibling pairs, and females predominate, with mother–daughter and sister–sister pairs being the most common and father–son pairs occurring relatively rarely.

In the present case, the brothers shared similar clinical manifestations, including malar rash, abnormal urinalysis, and thrombocytopenia. Thrombocytopenia, which is a component of the widely accepted classification criteria for SLE.

Table 1. Human Leukocyte Antigen Typing of the Subjects

<table>
<thead>
<tr>
<th>Locus</th>
<th>Mother</th>
<th>Older brother</th>
<th>Younger brother</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A*02, A11</td>
<td>A*02, A24</td>
<td>A*02, A02</td>
</tr>
<tr>
<td>B</td>
<td>B*15, B40</td>
<td>B*15, B40</td>
<td>B*15, B56</td>
</tr>
<tr>
<td>C</td>
<td>Cw08, Cw08</td>
<td>Cw08, Cw08</td>
<td>Cw04, Cw08</td>
</tr>
<tr>
<td>DR</td>
<td>DRB10901, DRB11501</td>
<td>DRB11201, DRB11501</td>
<td>DRB10901, DRB11501</td>
</tr>
<tr>
<td>DP</td>
<td>DPB1*0201</td>
<td>DPB10201, DPB10202</td>
<td>DPB10201, DPB10402</td>
</tr>
<tr>
<td>DQ</td>
<td>DQB10303(DQ9), DQB10602</td>
<td>DQB10301(DQ7), DQB10602</td>
<td>DQB10303(DQ9), DQB10602</td>
</tr>
</tbody>
</table>
proposed by the American College of Rheumatology (ACR), is associated with mortality and other serious clinical manifestations\(^{10, 11}\). Thrombocytopenia is categorized into: 1) an acute form that appears in association with severe, multi-systemic disease flares; and 2) a chronic condition that is present even when the disease is otherwise quiescent\(^{11}\). The combination of idiopathic thrombocytopenic purpura and acute hemolytic anemia may occur in isolation or in SLE patients\(^{11}\). Moreover, thrombocytopenia is a component of a severe familial form of SLE, and SLE is more severe in families that have a thrombocytopenic SLE patient\(^{12}\). Therefore, in the case of the older brother, Evans syndrome may have been an initial manifestation of SLE.

HLA class II genes have received significant attention as genetic risk factors for many autoimmune diseases, and there is evidence to support the assignment of specific HLA class II haplotypes as genetic risk factors for SLE in several populations. In Koreans, HLA-DRB1*15 and DQB1*06 have been associated with genetic susceptibility in SLE patients\(^{13, 14}\). A recent study using a large cohort identified three distinct SLE-associated haplotypes that contained the DRB1*1501/ DQB1*0602, DRB1*0801/DQB1*0402, and DRB1*0301/DQB1*0201 alleles, respectively\(^{15}\). In addition, haplotypes bearing the DRB1*1501/DQB1*0602 and DRB1*0301/DQB1*0201 alleles were detected in almost two-thirds of SLE patients, and were significantly associated with disease susceptibility in both family-based and case-control studies\(^{10}\).

We performed HLA typing of the two brothers and their mother. Unfortunately, their father refused to undergo HLA haplotyping. The two brothers and their mother shared the common haplotype of DRB1*1501, DPB1*0201, and DQB1*0602. There is one interesting report about the sharing of common HLA haplotypes between mother and son: Stevens and et al. reported a significant increase in the frequency of identical HLA class II alleles for male SLE patients and their mothers, as compared with the frequencies for healthy men and their mothers, and they proposed that the mother–son HLA relationship affects the sons risk of developing SLE. Moreover, the increase in mother–son HLA haplotypes was most marked for the DRBI locus in patients with SLE–associated DRBI alleles\(^{17}\).

In summary, in the present study, we describe male siblings who developed SLE, and we hypothesize that genetic predisposition plays an important role in the SLE susceptibility of these subjects.
13) Lee SG, Cha HS, Yang YS. The association of HLA-DRB1 and DQB1 alleles and a study of anticardiolipin antibody and Anti-β2 glycoprotein I antibody in Korean SLE patients. Immune Network 2002;2:227–32.