Palliative effect of ^{131}I-MIBG in relapsed neuroblastoma after autologous peripheral blood stem cell transplantation

Yong Jik Lee, M.D. and Jeong Ok Hah, M.D.
Department of Hematology/Oncology, Yeungnam University College of Medicine

Neuroblastoma is one of the most common extracranial solid tumor of childhood, and treatment of refractory neuroblastoma remains a significant clinical problem. Iodine-131–metabolobenzylguanidine (^{131}I-MIBG) therapy is an alternative approach to treat stage IV neuroblastoma. We report the palliative effect of ^{131}I-MIBG in three cases of relapsed neuroblastoma after autologous peripheral blood stem cell transplantation. ^{131}I-MIBG is an effective and relatively nontoxic palliative therapy resulting in reduction of pain and prolongation of survival. (Korean J Pediatr 2008;51:214-218)

Key Words: Relapsed neuroblastoma, ^{131}I-MIBG, Palliative therapy

Introduction

Neuroblastoma accounts for 8–10% of all childhood malignancies. The prognosis of neuroblastoma is highly variable depending on the age at diagnosis, stage of the disease, and tumor biology. High risk is defined as neuroblastoma occurring in children over 1 year of age with an amplification of the MYCN oncogene or distant metastases. Despite recent improvements in outcome with intensification of therapy for metastatic neuroblastoma, the long-term prognosis of advanced neuroblastoma remains poor with current survival probability of less than 40%.

Multiply relapsed patients have been treated with ^{131}I-MIBG over the last 2 decades for palliative effects. We report the palliative effects of ^{131}I-MIBG in three cases of relapsed neuroblastoma after autologous peripheral blood stem cell transplantation.

Case Report

Case 1

A 4-year-old male presented with fever, generalized weakness with easy fatigability, and left cervical lymph node swelling for 2 weeks. Physical examination revealed a 3×2 cm sized, firm, immobile and non-tender mass in the left cervical area. Laboratory findings were as follows: WBC 9,800/µL, hemoglobin 7.9 g/dL, platelet count 374,000/µL, lactate dehydrogenase (LDH) 602 U/L, serum ferritin 609.19 ng/mL, serum neuron–specific enolase (NSE) 79 ng/mL, 24hr–urine vanillylmandelic acid (VMA) 18.3 mg/day, 24hr–urine homovanillic acid (HVA) 36.6 mg/day. Computed tomography (CT) of chest showed a 3×3 cm sized mass in the paravertebral area. Bone scan revealed hot uptake of the paravertebral area and right femur involving bone marrow. The patient was diagnosed with stage IV neuroblastoma of paravertebral area. After chemotherapy was given every 4 weeks for 5 cycles (cisplatin 20 mg/m² on day 1–4, etoposide 125 mg/m² on day 1–3, ifosfamide 2,000 mg/m² on day 1–3, adriamycin 10 mg/m² on day 1–3), surgical resection of the residual paravertebral mass was performed. The follow-up 24hr–urine VMA and HVA were 1.24 mg/day and 2.51 mg/day and bone scan showed no hot spots in the whole body. An autologous peripheral blood stem cell transplantation (auto-PBSCT) with purging technique using magnetic beads was performed after carboplatin (400 mg/m² on days −7, −6, −5, −4), etoposide (200 mg/m² on days −7, −6, −5, −4), and melphalan (90 mg/m² on days −3, −2). Therapy with all-trans–retinoic acid (ATRA) for 2 weeks every month was given for one and a half years, when the patient complained of hip and lower back pain. An MIBG scintigram showed multiple metastases in the left supraclavicular area and the right acetabulum. Bone marrow
examination disclosed bone marrow involvement of tumor cells. After 3 cycles of chemotherapy with carboplatin (400 mg/m² on day 1 through 3), etoposide (100 mg/m² on day 1 through 5), ifosfamide (1,800 mg/m² on day 1 through 3), and Adriamycin (30 mg/m² on day 4), follow-up MIBG scintigram showed hot uptake of left supravacular lymph node. The patient was treated with I³I-MIBG at a dose of 4 mCi/kg. Bone pain subsided and he did well for several months. However, residual lesions on the left supravacular and right inguinal lymph nodes were shown on MIBG scintigram. Eight months later, he was treated again with I³I-MIBG at the same dose.

Six months after the second I³I-MIBG radiotherapy, the patient developed headache, vomiting and seizure. The MRI of the brain showed a 5x6 cm sized mass with hemorrhage into the left temporal lobe. The mass was entirely surgically resected and histologically was found to be neuroblastoma. Postoperative irradiation of the brain with 3 Gy was followed by a local irradiation of the left supravacular metastatic lesion with 3 Gy. The patient was treated with temozolomide (200 mg/m²/day, for 5 days a month) for 6 months. For the following one year, MIBG scintigram showed no hot uptakes. He has been doing well without any gross evidence of residual lesion.

Case 2

A 5-year-old male presented with intermittent episodes of chest pain. On physical examination, a bean-sized left supravacular lymph node was palpable. Laboratory examination showed elevations of the LDH (1,593 U/L), NSE (218 ng/mL), 24hr urine VMA (31.2 mg/day) and HVA (31.6 mg/day). CBC and serum ferritin were normal. A CT scan of the chest revealed a 3x3 cm sized mass in the posterior mediastinum. A bone scan showed diffuse hot uptake in the skull, left humerus, right 7th and 10th rib, 4th lumbar spine, and bilateral femurs. Bone marrow examination revealed rosette formed tumor cells. He was diagnosed with stage IV neuroblastoma. The patient received induction chemotherapy as case 1 followed by surgical resection of posterior mediastinal mass and auto-PBSCT after purging. The follow up 24hr urine VMA, HVA, and serum NSE were 2.1 mg/day, 3.36 mg/day, and 8.98 ng/mL. He had been doing well for 8 months after auto-PBSCT, when he developed a headache and bilateral lower leg pain. MIBG scan showed multiple metastatic lesions of skull, rib, spine, and both femurs. The patient was treated again with induction chemotherapy for 3 cycles. The MIBG scintigram showed no interval change compared with the prechemotherapy scan. Therefore chemotherapeutic regimens were changed to a regimen including carboplatin (500 mg/m² on day 1 and 2), etoposide (120 mg/m² on days 1–3), ifosfamide (1,800 mg/m² on days 1–3), and dacarbazine (250 mg/m² on day 1 and 2) for 2 cycles. However, he continued to complain of headache and bone pain as well as persistent metastatic lesions on MIBG scintigram. After receiving I³I-MIBG radiotherapy at 7.5 mCi/kg, bone pain subsided. Another I³I-MIBG radiotherapy was given after one year for persistent metastatic lesions on following up MIBG scintigram. Three and a half years after the recurrence, the patient remained relatively stable and bone pain disappeared. Platelet count was suppressed for 2 months after I³I-MIBG radiotherapy. One year later, third I³I-MIBG radiotherapy at 10 mCi/kg was performed as the multiple lesions of hot uptakes on MIBG scintigam were persistent. The recent follow up MIBG scintigram showed mild hot uptake of the skull, anterior chest, and bilateral femurs. However, the patient no longer complained of bone pain and was able to resume daily life including school attendance.

Case 3

A 7-year-old male was admitted for abdominal pain and distension for several days. Laboratory findings were as follows: WBC 14,500/μL, hemoglobin 9.7 g/dL, platelet 268,000/μL, LDH 332 U/L, ferritin 134.75 ng/mL, NSE 36 ng/mL, 24hr urine VMA 6.7 mg/day, 24hr urine HVA 5.7 mg/day. CT scan of the abdomen showed an 8x5 cm solitary mass with calcification in left suprarenal area. Bone scan and bone marrow examination demonstrated no metastatic lesions and no bone marrow involvement. Fine needle aspiration confirmed the diagnosis of ganglioneuroblastoma. The patient received complete surgical resection of the tumor followed by postoperative chemotherapy including cisplatin (60 mg/m² on day 0), etoposide (100 mg/m² on day 2 and 5), cyclophosphamide (900 mg/m² on day 3 and 4), and Adriamycin (30 mg/m² on day 2) for one year. Eleven months later, a recurrent tumor was found in the left kidney as shown on a routine surveillance CT scan. He was treated with left nephrectomy and chemotherapy as in case 1 followed by auto-PBSCT without purging. Two years later, PET–CT showed hot uptake in the left renal area and left humerus. Local irradiation of the left humerus and left renal area with 3 Gy for each area were performed. A year later,
however, the patient complained of abdominal pain and bilateral lower leg pain. MIBG scintigram showed multiple metastases in the liver and lung. The patient was treated with 131I-MIBG at 7.5 mCi/kg once. The patients pain subsided but pancytopenia persisted after 131I-MIBG radiotherapy for 2 months with no interval change on MIBG scintigram.

Discussion

Neuroblastoma is a disease of the sympathicoadrenal lineage of the neural crest, and therefore tumors can develop anywhere along the sympathetic nervous system. Patients with neuroblastoma suffer from the structural effects of abdominal or thoracic tumors and the consequences of the metastases, including bone pain, difficult walking, proptosis or periorbital bruising, and anemia or pancytopenia caused by marrow invasion.

Treatment depends on tumor staging and risk groups. Neuroblastoma can show widely varying courses, such as a spontaneous regression of the tumor or differentiation into either ganglioneuroma or neurona, or an aggressive progression with widespread metastases. Clinically, infant patients tend to show a favorable prognosis, slow tumor growth or a spontaneous regression, or a high response to chemotherapies, whereas older patients often show rapid tumor growth, metastases, and poor outcomes. Standard treatment programs for patients with high risk neuroblastoma include strongly myelosuppressive induction and consolidation chemotherapy regimens using combinations of alkylating agents, platinum compounds, and topoisomerase II inhibitors. All-trans-retinoic acid and 13-cis-retinoic acid decrease proliferation and induce differentiation in neuroblastoma cell lines, established from refractory tumors, or residual tumor cells that are resistant to cytotoxic agents. However, despite advances in treatment, the prognosis for patients with advanced neuroblastoma in older children is poor because of early metastasis and recurrence.

131I-MIBG is the radiiodinated analogue of norepinephrine. The chemical structure of MIBG includes the benzyl portion of bretylium with the guanidine group of guanethidine. Any malignant neural crest tumor, showing sufficient uptake and retention of the 131I-MIBG in a tracer study, is a candidate for radionuclide therapy. Standard indications for 131I-MIBG therapy are malignant pheochromocytoma, paraganglioma, neuroblastoma stage III and IV, medullary thyroid carcinoma and symptomatic, metastatic carcinoid tumors.

Treatment with 131I-MIBG has been used in children with neuroblastoma for palliative and recently curative purposes. According to the cumulative experience of several centers abroad, the overall objective response rate is approximately 35% in patients with chemoresistant neuroblastoma after induction chemotherapy or at relapse. There are currently four major methods for determining the therapeutic dose to be delivered: by dosimetry using a tracer dose of MIBG, by dose per body weight, by fixed dose, and by dose escalation in which hematopoietic tissue is harvested for stem cell transplant.

Tracer doses of 131I- or 123I-MIBG are now used routinely for neuroblastoma staging and response evaluations. In general, at much higher doses (3-18 mCi/kg), 131I-MIBG shows effect against refractory neuroblastoma, with response rates of 20-50%. 131I-MIBG infusion as a single agent in a phase I dose-escalation study showed a response rate of 37% in children with relapsed neuroblastoma. At doses of 15 mCi/kg or higher, response rates were apparently greater. In some patients, delayed effects were shown with significant responses at 12 months after treatment with 131I-MIBG. However, almost half of the patients required autologous hematopoietic stem cell infusion with bone marrow or peripheral blood stem cell support due to the prolonged myelosuppression. In addition many patients with stage IV neuroblastoma may not tolerate grade 4 hematopoietic toxicity or do not have a stem cell product available. Howard et al suggested that increasing the infusion amount improved overall response. Therefore multiple infusions of high dose 131I-MIBG were feasible and effective in refractory neuroblastoma, but were limited by hematologic toxicity, especially thrombocytopenia. Matthey et al demonstrated that 12 mCi/kg was the maximum tolerated dose due to protracted grade 4 hematopoietic toxicity at higher dose levels. Kang et al reported that a single infusion of 131I-MIBG at 12 mCi/kg or less was an effective and relatively nontoxic method for palliative treatment of neuroblastoma. In our cases, patients received multiple infusions of 131I-MIBG at 4-10 mCi/kg and showed substantial clinical improvement, including resolution of pain from progressive tumor without severe hematologic toxicities.

Thrombocytopenia in excess of neutropenia has frequently been described as a complication of MIBG therapy even with a single infusion. In our cases, neutropenia was usually transient and without associated infection. Matthey et al reported that despite myelosuppression, the incidence
of grade 3 to 4 proven infection was low (11%) and the acute toxic death rate was only 1%.

Acute non-hematologic grade 3 and 4 toxicities were infrequent. Cardiovascular toxicities included arrhythmia, capillary leak syndrome, edema, hypotension, and hypertension. Pulmonary toxicities included acute respiratory distress syndrome, dyspnea, and hypoxia. Some cases had gastrointestinal toxicity which was related to mucositis and had low glomerular filtration rate (GFR). Hepatic toxicities included hepatomegaly, hypalbuminemia, and elevations in bilirubin, alkaline phosphatase, gamma-glutamyltransferase levels, AST, and ALT\(^{30}\). Myelodysplastic syndrome and leukemia have been reported rarely as a late complication of \(^{131}\)I-MIBG radiotherapy. Weiss et al\(^{37}\) reported that \(^{131}\)I-MIBG radiotherapy may contribute to the risk of secondary leukemia in patients who have received previous intensive chemotherapy. Hall et al\(^{38}\) reported that the incidence of leukemia was increased after cumulative doses of 800 mCi. In our report, only thrombocytopenia of grade 2 toxicity was developed in 2 patients, and pancytopenia of grade 3 toxicity persisting for 2 months was observed in the other patient. Non-hematologic side effects were not seen.

In conclusion, submyeloablative dose of \(^{131}\)I-MIBG is effective and safe in providing palliative therapy for recurrent refractory neuroblastoma patients. Its clinical applicability is limited to the patients with no hope for cure at present. Possible future clinical trials to improve the therapeutic index of this unique targeted agent may focus on adequate dose escalation and interval and combining \(^{131}\)I-MIBG with conventional chemotherapy or other potential radiosensitization agents.

References

한글 요약

자가 말초혈조절모세포이식 후 제발된 신경모세포증 3예에서

\(^{131}\)I-MIBG의 고식적 치료 효과

양한대학교 의과대학 소아과학학교실

이용진 · 하경옥

신경모세포증은 소아에서 발생하는 흔한 두개의 고형 종양 중 하나로서 진행된 경우 고용량 항암요법 및 자가 말초혈조절모세포이식 후에도 재발이 잘 되어 예후가 매우 나쁘다. Iodine-131 metaiodobenzylguanidine (\(^{131}\)I-MIBG)는 치료에 잘 반응하지 않는 신경모세포증 4기 환자를 위한 대중적 치료 요법으로 제안적으로 이용되어 왔다. 저자들은 자가 말초혈조절모세포이식 후 재발된 신경모세포증 3예에서 \(^{131}\)I-MIBG를 이용하여 통증을 경감시키고 생존 기간을 늘리는 고시적인 치료 효과를 얻어 이들에 대한 증례 보고를 하는 바이다.

Yong Jik Lee and Jeong Ok Hah: Palliative effect of 131I-MIBG in relapsed neuroblastoma after autologous peripheral blood stem cell transplantation

84-8.

