INTRODUCTION

The role of *Helicobacter pylori* in various gastrointestinal pathologies, including gastritis, duodenal ulcer, gastric ulcer, stomach cancer, and stomach mucosa-associated lymphoid tissue (MALT)oma, has led to the development of many diagnostic methods for detecting *H. pylori* in the stomach, both invasive and non-invasive[1-3]. Among the non-invasive tests, the 13C-urea breath test (13C-UBT), first introduced by Graham et al., in 1987, is one of the most important, accurate, and commonly used methods for detecting *H. pylori* infection[4]. Due to its excellent diagnostic accuracy, the 13C-UBT has been promoted as the preferable method for confirming eradication as well.
as epidemiological investigations[5-7]. The 13C-UBT is based on the capacity of the *H. pylori* urease to hydrolyze urea to ammonia and carbon dioxide, which diffuses into the blood, and is excreted by the lungs. Thus, by labeling urea with 13C, the presence of *H. pylori* in the stomach can be identified by detecting 13C in the expired breath sample with measuring equipments such as an isotope ratio mass spectrometer (IRMS), a nondispersive isotope-selective infrared spectroscopy (NDIRS), or a laser-assisted ratio analysis (LARA). During recent years, the 13C-UBT has made several modifications to provide a more innocuous, simplified, and applicable procedure to be used in the clinical setting. Although the 12C-labelled urea can also be utilized for UBTs, this radioactive isotope brought up problems dealing with hospital department licensing for storage and disposal of radioactive substrates and, more importantly, radiation exposure for the patients[8, 9]. In contrast, the non-radioactive stable isotope 13C is innocuous enough that the 13C-UBT can be repeated as often as required in the same patient and can also be safely performed in children and women of child-bearing age. Moreover, lowering the dose of 13C is an advantageous attempt to provide a more risk-free UBT technique for *H. pylori* detection.

In this study, we compared a recently developed low-dose urea capsule that uses an IRMS system with the conventional 13C-UBT for detection of *H. pylori* infection. The currently used UBT method was tested followed by a 2-week washout period before performing the 13C-UBT using the 100 mg 13C-urea tablets (UBiT; Otsuka Pharmaceutical, Tokyo, Japan). Both urea breath tests required a minimum of 4-hour overnight fasting prior to testing for all participants. 13C was measured as the 13CO$_2$/12CO$_2$ isotope ratio and expressed as delta over baseline (DOB) per mil ($\delta\%$).

The first phase of the study protocol was done by urea breath testing using the Helifinder capsules, which contained polyethylene glycol (PEG) 4000 to enhance the dissolution of urea. The baseline breath sample was collected in a white-labeled test tube through a straw, and 20 minutes after ingestion of the capsule with 50 mL of water, a second breath sample was collected in a blue-labeled test tube. The 13CO$_2$ levels in the before and after 13C administration breath samples were analyzed using an isotope ratio mass spectrometer (IRMS, Medichems, Seoul, Korea). If the change (Δ^{13}C: $\%$) from the baseline (pre-ingestion) level at 20 minutes after ingestion was 2.0 $\%$ or higher, the patient was determined as *H. pylori*-infected, and non-infected if lower than 2.0 $\%$[12].

The second phase required collection of a pre-administration breath sample in a special breath-sampling bag, before ingestion of one film-coated 13C-urea tablet (UBiT) with 100 mL of water. Subsequently, participants remained in the left lateral decubitus position for 5 minutes upon which they sat up to a sitting position for further 15 minutes, before the 20-minute breath sample was taken. The 13CO$_2$ levels in these breath samples were analyzed by a nondispersive isotope-selective infrared spectrophotometer (NDIRS: UBiT-IR300; Otsuka Electronics, Osaka Japan) and likewise, *H. pylori* infection was determined using Δ^{13}C($\%$), the calculated difference between pre-administration and 20-minute breath sample. A *H. pylori*-positive result was given when the Δ^{13}C was more than 2.5 $\%$.
and *H. pylori*-negative when the Δ¹³C was less than 2.5‰. We repeated the Helifinder test following the UBiT test for 8 available cases after an additional 2-week washout period. A rapid urease test (CKD Bio Hp, Seoul, Korea) was performed during the endoscopic gastrointestinal biopsy in some of the patients.

3. Statistical analysis

The comparison of the ¹³C-UBTs (Helifinder® versus UBiT®) were tested by linear regression analysis and Pearson’s coefficient for correlation, Passing-Bablok comparison methods, kappa testing for agreement, and chi-square test using Analyse-it for Microsoft Excel (Analyse-It Software, Ltd, Leeds, UK).

RESULTS

Of the 39 apparently healthy volunteers between the age of 22 to 60 (mean±standard deviation, 37.6±9.75) with a male to female ratio of 12:27 (Table 1), 19 were positive by both Helifinder and UBiT methods with excellent agreement between the two methods (weighted kappa value, 1.0, Table 2). The DOB value of Helifinder (y, ‰) showed good agreement but with a proportional bias compared to UBiT (x, ‰) by the Passing and Bablok method (y=0.551x-0.225, r=0.74, P<0.0001, Fig. 1). Initially, a discrepant case with Helifinder-positive (13.97‰) and UBiT®-negative (0.5‰) results was detected, but on follow-up, both UBiT and Helifinder tests were positive (42.3‰ and 13.6‰, respectively). The rapid urease test was performed during the endoscopic gastrointestinal biopsy in this patient and a positive rapid urease test result supported the positive results from both urea breath tests. The replicate study of Helifinder for the 8 available cases also showed excellent agreement (y=0.972x+0.0141, r=0.9, P=0.0023; kappa statistics, 1.0) with no significant difference (P>0.05 by paired t-test).

DISCUSSION

There are many diagnostic tests available to date for the detection of *H. pylori* infection, including endoscopic gastrointestinal biopsy, campylobacter-like organism (CLO) test, *H. pylori* culture, ELISA and the urea breath test. Stringent conditions are required for *H. pylori* culture, so this culture technique is not regarded as an appropriate main diagnostic method. Moreover, most patients tend to avoid the biopsies or CLO tests since a gastrointestinal endoscopic procedure is necessary for the tests. Furthermore, given that *H. pylori* isn’t evenly dispersed among the gastric mucosa, there is always the likelihood of false negative results for the biopsy and CLO test. Hence, ¹³C-UBTs proved to have a higher sensitivity and specificity compared with biopsy and CLO test[12].

With the advent of this promising ¹³C-utilizing UBT, a test that provides diagnosis for infection as well as deter-
mining infective status after antibiotic treatment[6], various alterations have been made to lower the costs, decrease the amount of \(^{13}\text{C}\)-urea intake, reduce the number of breath samples needed, shorten the duration between the two breath samples and overall produce an easily applicable, convenient, and accurate test. The Helifinder capsules have accommodated many of these needs by not increasing the costs despite using an expensive isotope ratio mass spectrometer by lowering the \(^{13}\text{C}\)-urea dosage to 38 mg, another benefit in itself. Using capsules with PEG4000 enabled \(^{13}\text{C}\)-urea dose to be reduced and enhanced the dissolution of urea, which subsequently provided protection from the oral urease effect and contributed to the maintenance of satisfactory diagnostic quality. Moreover, these capsules offered convenience for the examinee by omitting the lateral decubitus position step required in the previous tests, including the UBIT method, and collecting only 10 mL of expired gas as opposed to 300 mL needed for the conventional method. The reduction in sample volume is an advantage when testing for the elderly, children, and patients with pulmonary disease. Nevertheless, education of the patients is imperative because this method uses test tubes and straws instead of balloons.

The limitation of this study was that the confirmatory tests were not performed for all cases and the relatively small number of recruited patients. Nevertheless, we propose the Helifinder capsule test for clinical use based on this head-to-head comparison study in the same individuals, with excellent agreement with the validated urea breath test (e.g. 0.76% with Helifinder and 1.4% with UBIT; 6.27% with Helifinder and 7.6% with UBIT, etc.). In addition, the one inconsistent case in our study group may suggest that UBIT may show false negative results, which may be due to inappropriate positional changing or inadequately exhaled breath samples.

We could conclude that in comparison to the conventional UBIT (100 mg \(^{13}\text{C}\)-urea tablet) method, the new low-dose capsule was appealing to a wide range of patients including children and the elderly as well as being comparable in quality and cost. Therefore, the Helifinder\(^{2}\) \(^{13}\text{C}\)-UBT is considered to be a convenient and valid alternative to the conventional UBIT for the diagnosis of \(H.\ pylori\) infection.

ACKNOWLEDGEMENTS

We thank Dr. Sung Hoon Kang of Medichems for their development and the supply of \(^{13}\text{C}\)-UBT capsules for the study.

REFERENCES

