The Clinical Significance of a Retroaortic Left Renal Vein

Jong Kil Nam, Sung Woo Park, Sang Don Lee, Moon Kee Chung

Department of Urology, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea

Purpose: A retroaortic left renal vein (RLRV) is located between the aorta and the vertebra and drains into the inferior vena cava. Urological symptoms can be caused by increased pressure in the renal vein. To evaluate the clinical importance of RLRV, we reviewed patients' medical records and radiologic findings.

Materials and Methods: Nine patients who were studied with multidetector computed tomography at our institution from January 2003 to December 2009 had urologic symptoms with RLRV. We retrospectively reviewed these patients' medical records and analyzed their clinical characteristics.

Results: The patients' mean age was 46.0±20.1 years (range, 17-65 years) and the male to female ratio was 5 to 4. The urologic symptoms of the initial diagnosis were various (hematuria: 5 of the 9 patients; left flank pain: 4 of the 9 patients; inguinal pain: 1 of the 5 male patients; and gross hematuria: 1 of the 9 patients). The distribution among the type I, II, III, and IV of RLRV was 6, 2, 1, and 0 patients, respectively. The concomitant diseases were ureteropelvic junction obstruction (UPJO; 2 of the 9 patients) and varicocele (2 of the 5 male patients). One patient with UPJO underwent pyeloplasty and the other patient with UPJO underwent nephrectomy due to a nonfunctional atrophied kidney. The microscopic hematuria was not resolved with conservative management for long-term follow-up.

Conclusions: Hematuria and inguinal or flank pain seem to be common in patients with RLRV. The most common type of RLRV was type I. It appeared that the microscopic hematuria continued in the long-term follow-up.

Key Words: Abnormalities; Renal veins; Tomography

INTRODUCTION

A left renal vein passing behind the abdominal aorta is termed a retroaortic left renal vein (RLRV), and this anomaly is a relatively uncommon condition. Recent advances in computed tomography and magnetic resonance imaging techniques make it possible to visualize the vascular structures in detail. Additionally, the congenital anomalies of the inferior vena cava (IVC) and its tributaries have become more frequently encountered in asymptomatic patients. RLRV anomalies, although usually overlooked, are not rare [1,2]. However, only a few cases showing clinical symptoms with this anomaly have been reported [3]. It is also of surgical importance when a left renal surgery is considered. Failure to recognize these anomalies may lead to severe hemorrhage and severe renal damage [4]. Compression of the RLRV between the aorta and the vertebra is known to be the cause of urological problems such as hematuria, varicocele, and ureteropelvic junction obstruction (UPJO) [5].

We retrospectively evaluated the type, frequency, clinical significance, management, and long-term follow-up of RLRV in 9 patients who were examined with multidetector computed tomography (MDCT) owing to urological problems.

MATERIALS AND METHODS

Twelve patients with urological problems, such as hematuria, flank and abdominal pain, varicocele, and UPJO, were studied with MDCT at our institution from January 2003 to December 2009. Full follow-up information was available for 9 of the 12 patients. We retrospectively reviewed these patients' medical records and analyzed their clinical characteristics including sex, age, type of RLRV, urologic symptoms, concomitant disease, treatment, and
TABLE 1. Patient summary

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Sex</th>
<th>Age (years)</th>
<th>Type</th>
<th>Urologic symptoms</th>
<th>Concomitant diseases</th>
<th>Treatment</th>
<th>Follow up (months)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Female</td>
<td>65</td>
<td>I</td>
<td>Microscopic hematuria</td>
<td>-</td>
<td>Observation</td>
<td>37</td>
<td>Hematuria settled</td>
</tr>
<tr>
<td>2</td>
<td>Male</td>
<td>17</td>
<td>I</td>
<td>Microscopic hematuria</td>
<td>-</td>
<td>Observation</td>
<td>24</td>
<td>Hematuria settled</td>
</tr>
<tr>
<td>3</td>
<td>Female</td>
<td>64</td>
<td>I</td>
<td>Microscopic hematuria</td>
<td>-</td>
<td>Observation</td>
<td>22</td>
<td>Hematuria settled</td>
</tr>
<tr>
<td>4</td>
<td>Female</td>
<td>33</td>
<td>II</td>
<td>Microscopic hematuria</td>
<td>Left UPJO</td>
<td>Pyeloplasty</td>
<td>18</td>
<td>Hematuria settled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pain resolved</td>
</tr>
<tr>
<td>5</td>
<td>Female</td>
<td>39</td>
<td>III</td>
<td>Microscopic hematuria</td>
<td>-</td>
<td>Observation</td>
<td>17</td>
<td>Hematuria settled</td>
</tr>
<tr>
<td>6</td>
<td>Male</td>
<td>29</td>
<td>I</td>
<td>Inguinal pain</td>
<td>Left varicocele (grade II)</td>
<td>Observation</td>
<td>69</td>
<td>Pain resolved</td>
</tr>
<tr>
<td>7</td>
<td>Male</td>
<td>35</td>
<td>I</td>
<td>Left flank pain</td>
<td>-</td>
<td>Observation</td>
<td>67</td>
<td>Hematuria settled</td>
</tr>
<tr>
<td>8</td>
<td>Male</td>
<td>54</td>
<td>I</td>
<td>Left flank pain</td>
<td>-</td>
<td>Observation</td>
<td>26</td>
<td>Hematuria settled</td>
</tr>
<tr>
<td>9</td>
<td>Male</td>
<td>78</td>
<td>II</td>
<td>Gross hematuria</td>
<td>Left UPJO</td>
<td>Nephrectomy</td>
<td>15</td>
<td>Hematuria and pain resolved</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UPJO: ureteropelvic junction obstruction, NFK: non-functioning kidney

follow-up results (Table 1).

Left renal vein abnormalities were categorized into four types. Type I, II, III, and IV of RLRV join the IVC in the orthotopic position, join the IVC at level L4-5, join at the circumaortic or collar left renal vein, or join the left common iliac vein, respectively (Fig. 1, 2) [6,7].

RESULTS

The mean age and follow-up duration of the 9 patients were
FIG. 2. Type I, II, and III of RLRV. (A) Type I of RLRV (arrow). (B) Type III of RLRV. The superior left renal vein (open arrow) and inferior left renal vein (arrow) crossed anterior and posterior to the aorta. (C, D) Ureteropelvic junction obstruction with type II of RLRV. Anteromedial crossing vessel (arrow in C) and joining IVC (arrow in D) at level L4. RLRV: retroaortic left renal vein, IVC: inferior vena cava.

46.0±20.1 years (range, 17-65 years) and 32.8±20.1 months (range, 15-69 months), respectively, and the male to female ratio was 5 to 4. The urologic symptoms of the initial diagnosis were various (microscopic hematuria: 5 of the 9 patients; left flank pain: 4 of the 9 patients; inguinal pain: 1 of the 5 male patients; and gross hematuria: 1 of the 9 patients), and the concomitant diseases were UPJO in 2 of the 9 patients and varicocele in 2 of the 5 male patients. The number of patients with type I, II, III, and IV of RLRV were 6, 2, 1, and 0 patients, respectively. In type II, all patients had UPJO and 1 of the patients had varicocele. One of these patients underwent laparoscopic pyeloplasty, and the other patient underwent laparoscopic nephrectomy owing to a nonfunctional kidney with varicocelectomy.

Symptoms in the five patients with microscopic hematuria continued, whereas 1 patient with gross hematuria had resolved gross hematuria after nephrectomy. The two patients with UPJO who underwent pyeloplasty and nephrectomy were treated successfully, and in the other 2 patients, the pain spontaneously resolved. The symptoms in the one patient with varicocele also spontaneously improved (Table 1). However, the microscopic hematuria was not resolved with conservative management for long-term follow-up.

DISCUSSION

The development of the renal veins is a part of the complex developmental process of the IVC. The process starts from the fourth week of conception and ends at about the eighth week. The IVC is formed from a vast network of three pairs of parallel veins in communication. The posterior cardinal veins, the subcardinal veins, and the supracardinal veins are in the order of appearance [8,9]. During the development of the IVC, there are anastomotic communications between the subcardinal and supracardinal channels that form a collar of veins encircling the aorta. The ventral portion of the circumaortic collar persists as the normal left
renal vein. If the dorsal portion of this collar persists, then
the left renal vein is posterior to the aorta, forming a RLRV
[8,9].

The diagnostic methods for detecting IVC anomalies in
previous reports were autopsy study, renal venography,
color Doppler ultrasonography, computed tomography,
and magnetic resonance imaging. With recent advances in
computed tomography technology, MDCT has replaced
conventional angiography and venography in most clinical
conditions [6]. MDCT is a reliable, easily applicable, and
noninvasive tool for demonstration of abdominal organs
and vascular structures [6].

Left renal vein anomalies are generally classified into
type I, the ventral preaortic limb of the left renal vein is obliterated, but the dorsal retroaortic limb persists and joins the IVC in the orthotopic position [1,2,6,7]. Type II results from the obliteration of the ventral preaortic limb of the left renal vein, and the remaining dor-
sal limb turns into the RLRV. The left renal vein lies at the
level of L4 to L5 and joins the gonadal and ascending lum-
bar veins before joining the IVC [1,2,6,7]. Type III is the cir-
sumaortic left renal vein or venous collar. This type is due
to the persistence of subsupracardial and intersupracardial
anastomoses and the dorsal limb of the left renal vein. If
all small retroaortic veins that empty into the IVC are con-
sidered, the incidence of a circumaortic left renal vein could
be as high as 16% [1,2,6,7]. In type IV, the ventral preaortic
limb of the left renal vein is obliterated, and the remaining
dorsal limb becomes the RLRV. Then, the RLRV courses
obliquely and caudally behind the aorta to join the left com-
mon iliac vein [1,2,6,7]. The incidences of left IVC, double IVC, and retrocaval ureter are 0.2-0.5%, 0.3-2.8%, and
0.1% [1,2,8]. The incidences of RLRV type I, II, III, and IV are 0.3-1.9% [10,11], 0.4-0.9% [12,13], 1.5-8.7% [10,14], and
0.16% [6], respectively. RLRV type I, II, III, and IV in our
cases occurred in 6, 2, 1, and 0 patients, respectively.

During the renal surgery, this kind of anatomical varia-
tion influences the technical feasibility of the operation.
Failure to recognize these anomalies may lead to severe
hemorrhage and severe renal damage [4]. Therefore, spe-
cial attention is needed. Microscopic hematuria can be
caused by increased pressure of the renal vein. The posteri-
or "nutcracker phenomenon" occurs when a decreased
space between the aorta and the vertebra causes com-
pression of the RLRV. It is postulated that compression of
the left renal vein leads to hematuria because of elevated
pressure in the left renal vein, resulting in congestion of the
left kidney and the venous communications [15-18]. It is
well known that the gonadal, ascending lumbar, adrenal,
ureteral, and capsular veins are potential collateral venous
pathways in cases of renal vein compression or obstruction.
These anomalous communication channels are respon-
sible for hematuria. In addition, vascular dilatation of the
afferent venous system can result from increased drainage
pressure, which men can suffer from left-sided varicocele
and women from pelvic congestion syndrome [19-21]. In
our series, 3 patients with microscopic hematuria had type
I, 1 had type II, and 1 had type III. Symptoms continued
in all patients with microscopic hematuria, maybe because
of increased pressure in the renal vein, that is, the posterior
nutcracker phenomenon. In two patients with varicocele,
symptoms spontaneously improved in one patient (type I),
and the other patient (type II) resolved his problem after
nephrectomy. In the two cases of type II with a left-sided
UPJO, it was postulated that dilatation of the renal pelvis
led to the UPJO directly posterior contacting the dilated
left gonadal vein (Fig. 2C). In our cases, one patient with
partial obstruction underwent pyeloplasty because of se-
ever left flank pain, and the other patient underwent neph-
rectomy for a nonfunctioning kidney. In adult UPJO, the
incidence of aberrant vessels is 35-39% [22-24]. Braun et
al showed that 12 of 27 patients with UPJO had aberrant
vessels. Three of 12 patients were related to dilated gona-
dal vessels and 1 patient had RLRV type III [25].

Cho et al reported the congenital absence of the IVC as
a rare cause of pulmonary thromboembolism [26]. Gibo and
Onitsuka reported a case of RLRV that showed left renal
vein hypertension by pullback pressure measurement
from the RLRV to the IVC [16]. Therefore, congenital anoma-
lies of the venous system might easily induce the con-
gestion of the renal bloodstream, and these anomalies
might be the predisposing conditions of clinical symptoms
such as hematuria, flank pain, and pelvic congestion.

Diagnosis of renal vein anomalies is important information
in retroperitoneal surgery. Unawareness of this situation
during retroperitoneal surgery can result in bleeding,
nephrectomy, and even death [10]. Surgeons prefer the left
renal vein in renal transplantation because of its longer
length. Because of this, it is important to know the course
of the left renal vein and whether it is pre-aortic or not. It
is also important to be aware of anomalies of the renal vein
for distinctive diagnosis of retroperitoneal tumors, retro-
peritoneal lymph node pathologies, and aortic dissection
[10,16]. Before the renal surgery, careful reading of the pre-
operative RLRV imaging study helps to avoid fatal complica-
tions during the operation.

This study was limited by the fact that it was performed
retrospectively, and the data were analyzed in selected pa-
cients who had urologic symptoms. Another limitation of
our study is the relatively small sample size. As a con-
sequence, we could not reveal the Korean incidence, fol-
low-up results, concomitant diseases, or a casual relation-
ship between RLRV and urologic symptoms. Therefore, ad-
ditional confirmatory studies are required in the near
future.

CONCLUSIONS

RLRV is usually asymptomatic. It may sometimes cause
hematuria, flank pain, and vascular dilations (varicocele).
The most common type of RLRV was type I. The microscopic
hematuria due to RLRV is thought to be continued in the
long-term follow-up. For patients with gross hematuria or
flank and inguinal pain, individualized treatment such as
conservative care, pyeloplasty, varicocelectomy, and nephrectomy should be selected. Widespread use of diagnostic MDCT in retroperitoneal diseases, particularly kidney tumors, can identify changes in the renal vascularization more easily, and thus allows urologists to plan a safe and less complicated surgery.

Conflicts of Interest
The authors have nothing to disclose.

REFERENCES