Journal List > J Korean Diabetes Assoc > v.31(6) > 1062473

Lee, Kim, Seo, Jeon, Moon, Kim, Doh, Kim, Kim, Yoo, and Lee: Association of Kir6.2 and Peroxisome Proliferator-activated Receptor-gamma (PPARγ) Polymorphisms with Type 2 Diabetes in Koreans

Abstract

Background

The type 2 diabetes is a typical polygenic disease complex, for which several common risk alleles have been identified. Several variants may contribute significantly to the risk of type 2 diabetes conferring insulin resistance of liver, muscle and fat (Pro12Ala) and a relative insulin secretory deficiency (Glu23Lys). In this study, we evaluated the association of Pro12Ala variant of the peroxisome proliferator-activated receptor-γ and the Glu23Lys variant of the ATP-sensitive potassium channel, Kir6.2 (KCNJ11) with the type 2 diabetes in Korean population.

Method

This study included 331 subjects consisting of 172 patients with type 2 diabetes and 159 non-diabetic control subjects enrolled from the Kyungpook, Keimyung and Catholic university hospital in Daegu, Korea. We genotyped Kir6.2 (Glu23Lys) and PPARγ (Pro12Ala) polymorphism and examined their association with the type 2 diabetes.

Result

In the separate analyses, the Kir6.2 Glu23Lys (P = 0.385) and the PPARγ Pro12Ala (P = 0.191) polymorphism showed no significant association with type 2 diabetes. In addition, the results of our study showed no evidence of a synergistic interaction between Kir6.2 and PPARγ gene in each group (P = 0.110, P = 0.276).

Conclusion

In this study, no association was seen between the genetic polymorphisms of Kir6.2, PPARγ and type 2 diabetes. However, to clarify whether genetic polymorphisms of these genes contribute to the development of type 2 diabetes, further studies involving larger Korean populations may be needed.

Figures and Tables

Table 1
Dermographic and health behavior variables among study subjects
jkda-31-455-i001

*expressed as mean ± SD. P < 0.05.

Table 2
Genotype and allele frequencies of Kir 6.2 gene in both group
jkda-31-455-i002

*odds ratio adjusted for age, sex, BMI, smoking status, drinking status. OR, odds ratio; T2D, type 2 diabetes mellitus.

Table 3
Genotype frequencies of Kir 6.2 gene by gender in both group
jkda-31-455-i003

*odds ratio adjusted for age, sex, BMI, smoking status, drinking status. OR, odds ratio; T2D, type 2 diabetes mellitus.

Table 4
Genotype and allele frequencies of PPARγ gene in both group
jkda-31-455-i004

*odds ratio adjusted for age, sex, BMI, smoking status, drinking status. OR, odds ratio; T2D, type 2 diabetes mellitus.

Table 5
Genotype frequencies of PPARγ gene by gender in both group
jkda-31-455-i005

*odds ratio adjusted for age, sex, BMI, smoking status, drinking status. OR, odds ratio; T2D, type 2 diabetes mellitus.

Table 6
Distribution of the genotype combination of Kir6.2 and PPARγ genes in both group
jkda-31-455-i006

*odds ratio adjusted for age, sex, BMI, smoking status, drinking status. OR, odds ratio; T2D, type 2 diabetes mellitus.

References

1. Riedel MJ, Steckley DC, Light PE. Current status of the e23k Kir6.2 polymorphism: Implications for type 2 diabetes. Hum Gent. 2005. 116:133–145.
2. Duggirala R, Blangero J, Almasy L, Dyer TD, Williams KL, Leach RJ, O'Connell P, Stern MP. Linkage of type 2 diabetes mellitus and of age at onset to a genetic location on chromosome 10q in Mexican Americans. Am J Hum Genet. 1999. 64:1127–1140.
3. Rewers M, Norris JM, Eisenbarth GS, Erlich HA, Beaty B, Klingensmith G, Hoffman M, Yu L, Bugawan TL, Blair A, Hamman RF, Groshek M, McDuffie RS Jr. Beta-cell autoantibodies in infants and toddlers without IDDM relatives: Diabetes autoimmunity study in the young (DAISY). J Autoimmun. 1996. 9:405–410.
4. Polonsky KS, Sturis J, Bell GI. Seminars in medicine of the Beth Israel Hospital, Boston. Non-insulin-dependent diabetes mellitus-a genetically programmed failure of the beta cell to compensate for insulin resistance. N Engl J Med. 1996. 334:777–783.
5. Barnett AH, Eff C, Leslie RD, Pyke DA. Diabetes in identical twins. A study of 200 pairs. Diabetologia. 1981. 20:87–93.
6. Newman B, Selby JV, King MC, Slemenda C, Fabsitz R, Friedman GD. Concordance for type 2 (non-insulin-dependent) diabetes mellitus in male twins. Diabetologia. 1987. 30:763–768.
7. Brosseau JD, Eelkema RC, Crawford AC, Abe TA. Diabetes among the three affiliated tribes: Correlation with degree of Indian inheritance. Am J Public Health. 1979. 69:1277–1278.
8. Chakraborty R, Ferrell RE, Stern MP, Haffner SM, Hazuda HP, Rosenthal M. Relationship of prevalence of non-insulin-dependent diabetes mellitus to Amerindian admixture in the Mexican Americans of San Antonio, texas. Genet Epidemiol. 1986. 3:435–454.
9. Rich SS. Mapping genes in diabetes. Genetic epidemiological perspective. Diabetes. 1990. 39:1315–1319.
10. Knowler WC, Williams RC, Pettitt DJ, Steinberg AG. Gm3;5,13,14 and type 2 diabetes mellitus: An association in American indians with genetic admixture. Am J Hum Genet. 1988. 43:520–526.
11. Kahn CR, Vicent D, Doria A. Genetics of non-insulin-dependent (type-II) diabetes mellitus. Annu Rev Med. 1996. 47:509–531.
12. Pillay TS, Langlois WJ, Olefsky JM. The genetics of non-insulin-dependent diabetes mellitus. Adv Genet. 1995. 32:51–98.
13. Gloyn AL, Hashim Y, Ashcroft SJ, Ashfield R, Wiltshire S, Turner RC. Association studies of variants in promoter and coding regions of beta-cell ATP-sensitive K-channel genes sur1 and Kir6.2 with type 2 diabetes mellitus (UKPDS 53). Diabet Med. 2001. 18:206–212.
14. Hani EH, Boutin P, Durand E, Inoue H, Permutt MA, Velho G, Froguel P. Missense mutations in the pancreatic islet beta cell inwardly rectifying K+ channel gene (Kir6.2/bir): A meta-analysis suggests a role in the polygenic basis of type II diabetes mellitus in Caucasians. Diabetologia. 1998. 41:1511–1515.
15. Nielsen EM, Hansen L, Carstensen B, Echwald SM, Drivsholm T, Glumer C, Thorsteinsson B, Borch-Johnsen K, Hansen T, Pedersen O. The e23k variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes. Diabetes. 2003. 52:573–577.
16. Doney AS, Fischer B, Cecil JE, Boylan K, McGuigan FE, Ralston SH, Morris AD, Palmer CN. Association of the pro12ala and c1431t variants of PPARg and their haplotypes with susceptibility to type 2 diabetes. Diabetologia. 2004. 47:555–558.
17. Ghoussaini M, Meyre D, Lobbens S, Charpentier G, Clement K, Charles MA, Tauber M, Weill J, Froguel P. Implication of the pro12ala polymorphism of the PPAR-gamma 2 gene in type 2 diabetes and obesity in the French population. BMC Med Genet. 2005. 6:11.
18. Mori H, Ikegami H, Kawaguchi Y, Seino S, Yokoi N, Takeda J, Inoue I, Seino Y, Yasuda K, Hanafusa T, Yamagata K, Awata T, Kadowaki T, Hara K, Yamada N, Gotoda T, Iwasaki N, Iwamoto Y, Sanke T, Nanjo K, Oka Y, Matsutani A, Maeda E, Kasuga M. The pro12 → ALA substitution in PPAR-gamma is associated with resistance to development of diabetes in the general population: Possible involvement in impairment of insulin secretion in individuals with type 2 diabetes. Diabetes. 2001. 50:891–894.
19. Zhang C, Qi L, Hunter DJ, Meigs JB, Manson JE, van Dam RM, Hu FB. Variant of transcription factor 7-like 2 (tcf7l2) gene and the risk of type 2 diabetes in large cohorts of U.S. Women and men. Diabetes. 2006. 55:2645–2648.
20. Horikawa Y. Calpain-10 (NIDDM1) as a susceptibility gene for common type 2 diabetes. Endocr J. 2006. 53:567–576.
21. Meigs JB, Dupuis J, Liu C, O'Donnell CJ, Fox CS, Kathiresan S, Gabriel SB, Larson MG, Yang Q, Herbert AG, Wilson PW, Feng D, Tofler GH, Cupples LA. PAI-1 gene 4G/5G polymorphism and risk of type 2 diabetes in a population-based sample. Obesity (Silver Spring). 2006. 14:753–758.
22. Fukuyama K, Ohara T, Hirota Y, Maeda K, Kuno S, Zenibayashi M, Teranishi T, Kouyama K, Maeda E, Sakamoto N, Kasuga M. Association of the -112a>c polymorphism of the uncoupling protein 1 gene with insulin resistance in Japanese individuals with type 2 diabetes. Biochem Biophys Res Commun. 2006. 339:1212–1216.
23. Wang H, Zhang H, Jia Y, Zhang Z, Craig R, Wang X, Elbein SC. Adiponectin receptor 1 gene (Adipor1) as a candidate for type 2 diabetes and insulin resistance. Diabetes. 2004. 53:2132–2136.
24. Musi N. AMP-activated protein kinase and type 2 diabetes. Curr Med Chem. 2006. 13:583–589.
25. Cui Y, Xu X, Bi H, Zhu Q, Wu J, Xia X, Qiushi R, Ho PC. Expression modification of uncoupling proteins and MNsod in retinal endothelial cells and pericytes induced by high glucose: The role of reactive oxygen species in diabetic retinopathy. Exp Eye Res. 2006. 83:807–816.
26. Hansen L, Pedersen O. Genetics of type 2 diabetes mellitus: Status and perspectives. Diabetes Obes Metab. 2005. 7:122–135.
27. Zietz B, Leonhardt K, Schaffler A. [candidate genes and polymorphism analysis in type 2 diabetes mellitus]. Med Klin (Munich). 2006. 101:605–616.
28. Clement K, Lahlou N, Ruiz J, Hager J, Bougneres P, Basdevant A, Guy-Grand B, Froguel P. Association of poorly controlled diabetes with low serum leptin in morbid obesity. Int J Obes Relat Metab Disord. 1997. 21:556–561.
29. Gribble FM, Reimann F. Sulphonylurea action revisited: The post-cloning era. Diabetologia. 2003. 46:875–891.
30. Haider S, Antcliff JF, Proks P, Sansom MS, Ashcroft FM. Focus on Kir6.2: A key component of the ATP-sensitive potassium channel. J Mol Cell Cardiol. 2005. 38:927–936.
31. Inagaki N, Gonoi T, Clement JPt, Namba N, Inazawa J, Gonzalez G, Aguilar-Bryan L, Seino S, Bryan J. Reconstitution of IKATP: An inward rectifier subunit plus the sulfonylurea receptor. Science. 1995. 270:1166–1170.
32. Clement JPt, Kunjilwar K, Gonzalez G, Schwanstecher M, Panten U, Aguilar-Bryan L, Bryan J. Association and stoichiometry of k(ATP) channel subunits. Neuron. 1997. 18:827–838.
33. Li L, Shi Y, Wang X, Shi W, Jiang C. Single nucleotide polymorphisms in K(ATP) channels: Muscular impact on type 2 diabetes. Diabetes. 2005. 54:1592–1597.
34. Chawla A, Schwarz EJ, Dimaculangan DD, Lazar MA. Peroxisome proliferator-activated receptor (PPAR) gamma: Adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology. 1994. 135:798–800.
35. Guo L, Tabrizchi R. Peroxisome proliferator-activated receptor gamma as a drug target in the pathogenesis of insulin resistance. Pharmacol Ther. 2006. 111:145–173.
36. Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem. 1995. 270:12953–12956.
37. Stumvoll M, Haring H. The peroxisome proliferator-activated receptor-gamma2 pro12ala polymorphism. Diabetes. 2002. 51:2341–2347.
38. Yen CJ, Beamer BA, Negri C, Silver K, Brown KA, Yarnall DP, Burns DK, Roth J, Shuldiner AR. Molecular scanning of the human peroxisome proliferator activated receptor gamma (HPPAR gamma) gene in diabetic Caucasians: Identification of a pro12ala PPAR gamma 2 missense mutation. Biochem Biophys Res Commun. 1997. 241:270–274.
39. Ek J, Andersen G, Urhammer SA, Hansen L, Carstensen B, Borch-Johnsen K, Drivsholm T, Berglund L, Hansen T, Lithell H, Pedersen O. Studies of the pro12ala polymorphism of the peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2) gene in relation to insulin sensitivity among glucose tolerant caucasians. Diabetologia. 2001. 44:1170–1176.
40. Radha V, Vimaleswaran KS, Babu HN, Abate N, Chandalia M, Satija P, Grundy SM, Ghosh S, Majumder PP, Deepa R, Rao SM, Mohan V. Role of genetic polymorphism peroxisome proliferator-activated receptor-gamma2 pro12ala on ethnic susceptibility to diabetes in South-Asian and Caucasian subjects: Evidence for heterogeneity. Diabetes Care. 2006. 29:1046–1051.
41. Tonjes A, Scholz M, Loeffler M, Stumvoll M. Association of pro12ala polymorphism in peroxisome proliferator-activated receptor {gamma} with pre-diabetic phenotypes: Meta-analysis of 57 studies on nondiabetic individuals. Diabetes Care. 2006. 29:2489–2497.
42. Jaziri R, Lobbens S, Aubert R, Pean F, Lahmidi S, Vaxillaire M, Porchay I, Bellili N, Tichet J, Balkau B, Froguel P, Marre M, Fumeron F. The PPARg pro12ala polymorphism is associated with a decreased risk of developing hyperglycemia over 6 years and combines with the effect of the apm1 g-11391a single nucleotide polymorphism: The data from an epidemiological study on the insulin resistance syndrome (desir) study. Diabetes. 2006. 55:1157–1162.
43. McKeigue PM, Shah B, Marmot MG. Relation of central obesity and insulin resistance with high diabetes prevalence and cardiovascular risk in South Asians. Lancet. 1991. 337:382–386.
44. Moon MK, Cho YM, Jung HS, Park YJ, Yoon KH, Sung YA, Park BL, Lee HK, Park KS, Shin HD. Genetic polymorphisms in peroxisome proliferator-activated receptor gamma are associated with type 2 diabetes mellitus and obesity in the Korean population. Diabet Med. 2005. 22:1161–1166.
45. Oh EY, Min KM, Chung JH, Min YK, Lee MS, Kim KW, Lee MK. Significance of pro12ala mutation in peroxisome proliferator-activated receptor-gamma2 in Korean diabetic and obese subjects. J Clin Endocrinol Metab. 2000. 85:1801–1804.
46. World health organization. Definition, diagnosis and classification of diabetes mellitus and its complications. Report of a who consultation. Part 1, Diagnosis and classification of diabetes mellitus. 1999. Geneva: World Health Organization.
47. Inoue H, Ferrer J, Warren-Perry M, Zhang Y, Millns H, Turner RC, Elbein SC, Hampe CL, Suarez BK, Inagaki N, Seino S, Permutt MA. Sequence variants in the pancreatic islet beta-cell inwardly rectifying K+ channel Kir6.2 (bir) gene: Identification and lack of role in Caucasian patients with NIDDM. Diabetes. 1997. 46:502–507.
48. Sakura H, Wat N, Horton V, Millns H, Turner RC, Ashcroft FM. Sequence variations in the human Kir6.2 gene, a subunit of the beta-cell ATP-sensitive K-channel: No association with niddm in while caucasian subjects or evidence of abnormal function when expressed in vitro. Diabetologia. 1996. 39:1233–1236.
49. Yamada Y, Kuroe A, Li Q, Someya Y, Kubota A, Ihara Y, Tsuura Y, Seino Y. Genomic variation in pancreatic ion channel genes in Japanese type 2 diabetic patients. Diabetes Metab Res Rev. 2001. 17:213–216.
50. Yokoi N, Kanamori M, Horikawa Y, Takeda J, Sanke T, Furuta H, Nanjo K, Mori H, Kasuga M, Hara K, Kadowaki T, Tanizawa Y, Oka Y, Iwami Y, Ohgawara H, Yamada Y, Seino Y, Yano H, Cox NJ, Seino S. Association studies of variants in the genes involved in pancreatic beta-cell function in type 2 diabetes in Japanese subjects. Diabetes. 2006. 55:2379–2386.
51. Mancini FP, Vaccaro O, Sabatino L, Tufano A, Rivellese AA, Riccardi G, Colantuoni V. Pro12ala substitution in the peroxisome proliferator-activated receptor-gamma2 is not associated with type 2 diabetes. Diabetes. 1999. 48:1466–1468.
52. Horiki M, Ikegami H, Fujisawa T, Kawabata Y, Ono M, Nishino M, Shimamoto K, Ogihara T. Association of pro12ala polymorphism of PPARgamma gene with insulin resistance and related diseases. Diabetes Res Clin Pract. 2004. 66:Suppl 1. S63–S67.
53. Hansen SK, Nielsen EM, Ek J, Andersen G, Glumer C, Carstensen B, Mouritzen P, Drivsholm T, Borch-Johnsen K, Jorgensen T, Hansen T, Pedersen O. Analysis of separate and combined effects of common variation in KCNJ11 and PPARg on risk of type 2 diabetes. J Clin Endocrinol Metab. 2005. 90:3629–3637.
TOOLS
Similar articles